Passive Vibrations Control of Ultrasonic Machining Subjected to Tuned and External Forces

  • Yaser A. Amer Prof. of mathematics, faculty of science, zagazig university
  • Mai M. Agwa Zagazig Higher institute of Engineering & Tech
Keywords: Stability, Frequency response, Multiple times scale, Vibration control, tuned force, excitation, Passive control

Abstract

Linear passive control is used to study and description the vibration of the ultrasonic machining (USM) non-linear dynamical system is consists of tuned and external force .The system is represented by a two-degree-of-freedom (2DOF).The method of multiple scales perturbation technique (MSPT) is applied to obtain approximate solution. The vibration is studded numerically on the system with and without control .The stability at the worst resonance cases ( , , , , ) is obtained using both phase plane methods and frequency response of resonance case. Effects of different parameters on the system behavior are studied numerically by using MATLAB program. Finally, a comparison of previously published work is done.

Downloads

Download data is not yet available.

Author Biography

Mai M. Agwa, Zagazig Higher institute of Engineering & Tech

Department of Basic science, Zagazig Higher institute of Engineering & Tech, Zagazig, Egypt

References

Hamed, Y. S., Sayed, M., & El-Awad, R. A. (2017). On Controlling the Nonlinear Response of Vibrational Vertical Conveyor under Mixed Excitation. Global Journal of Pure and Applied Mathematics, 13(9), 6493-6509.‏

Alışverişçi, G. F. (2011, December). Nonlinear Analysis of Shaking Conveyers with Single-mass; Crank‐and‐Rod Exciters. In AIP Conference Proceedings (Vol. 1400, No. 1, pp. 60-65). AIP.‏

Zhao, Y. J., Huang, F. S., & Zhao, Z. L. (2013). Dynamic Analysis On Vertical Vibratory Conveyor. In Advanced Materials Research (Vol. 694, pp. 3-6). Trans Tech Publications.‏

Bayıroğlu, H. (2015). Nonlinear Analysis of Unbalanced Mass of Vertical Conveyer with Non-Ideal Exciters. In Applied Mechanics and Materials (Vol. 706, pp. 35-43). Trans Tech Publications.

‏El-Sayed, A. T., & Bauomy, H. S. (2016). Nonlinear analysis of vertical conveyor with positive position feedback (PPF) controllers. Nonlinear Dynamics, 83(1-2), 919-939.‏

Hamed, Y. S., El-Sayed, A. T., & El-Zahar, E. R. (2016). On controlling the vibrations and energy transfer in MEMS gyroscope system with simultaneous resonance. Nonlinear Dynamics, 83(3), 1687-1704.‏

Sayed, M., Elagan, S. K., Higazy, M., & Elgafoor, M. A. (2018). Feedback Control and Stability of the Van der Pol Equation Subjected to External and Parametric Excitation Forces. International Journal of Applied Engineering Research, 13(6), 3772-3783.‏

Gulyayev, V. I., & Tolbatov, E. Y. (2002). Forced and self-excited vibrations of pipes containing mobile boiling fluid clots. Journal of Sound and Vibration, 257(3), 425-437.‏

Dai, X., & Dong, J. (2005). Self-excited vibrations of a rigid rotor rubbing with the motion- limiting stop. International journal of mechanical sciences, 47(10), 1542-1560.‏

Warminski, J., Bochenski, M., Jarzyna, W., Filipek, P., & Augustyniak, M. (2011). Active suppression of nonlinear composite beam vibrations by selected control algorithms. Communications in Nonlinear Science and Numerical Simulation , 16(5), 2237-2248.‏

Wang, K., Xiong, S., & Zhang, J. (2011). Active vibration control of a flexible cantilever beam using piezoelectric actuators. Energy Procedia, 13, 4367-4374.‏

El-Ganaini, W. A., Saeed, N. A., & Eissa, M. (2013). Positive position feedback (PPF) controller for suppression of nonlinear system vibration. Nonlinear Dynamics, 72(3), 517- 537.‏

Eissa, M., Kandil, A., Kamel, M., & El-Ganaini, W. A. (2015). On controlling the response of primary and parametric resonances of a nonlinear magnetic levitation system. Meccanica, 50(1), 233-251.‏

El-Ganaini, W. A. (2018). Duffing Oscillator Vibration Control via Suspended Pendulum. Appl. Math, 12(1), 203-215.‏

Kecik, K., Mitura, A., Sado, D., & Warminski, J. (2014). Magnetorheological damping and semi-active control of an autoparametric vibration absorber. Meccanica, 49(8), 1887-1900.‏

Kecik, K. (2015). Dynamics and control of an active pendulum system. International Journal of Non-linear Mechanics, 70, 63-72.‏

Tusset, A. M., Janzen, F. C., Piccirillo, V., Rocha, R. T., Balthazar, J. M., & Litak, G. (2017). On nonlinear dynamics of a parametrically excited pendulum using both active control and passive rotational (MR) damper. Journal of Vibration and Control, 1077546317714882.‏

Hamed, Y. S., Alharthi, M. R., & AlKhathami, H. K. (2017). Active vibration control of a dynamical system subjected to simultaneous excitation forces. International Journal of Applied Engineering Research, 12(4), 434-442.‏

Yabuno, H., Kanda, R., Lacarbonara, W., & Aoshima, N. (2004). Nonlinear active cancellation of the parametric resonance in a magnetically levitated body. Journal of Dynamic Systems, Measurement, and Control, 126(3), 433-442.‏

Jun, L., Xiaobin, L., & Hongxing, H. (2010). Active nonlinear saturation-based control for suppressing the free vibration of a self-excited plant. Communications in Nonlinear Science and Numerical Simulation, 15(4), 1071-1079.‏

Jun, L., Hongxing, H., & Rongying, S. (2007). Saturation-based active absorber for a non- linear plant to a principal external excitation. Mechanical systems and signal processing, 21(3), 1489-1498.‏

Hamed, Y. S., El-Sayed, A. T., & El-Zahar, E. R. (2016). On controlling the vibrations and energy transfer in MEMS gyroscope system with simultaneous resonance. Nonlinear Dynamics, 83(3), 1687-1704.‏

Abdelhafez, H., & Nassar, M. (2016). Effects of time delay on an active vibration control of a forced and Self-excited nonlinear beam. Nonlinear Dynamics, 86(1), 137-151.‏

Gao, X., & Chen, Q. (2013). Active vibration control for a bilinear system with nonlinear velocity time-delayed feedback. In World Congress on Engineering London, UK (Vol. 3, pp. 978-988).‏

Shin, C., Hong, C., & Jeong, W. B. (2012). Active vibration control of clamped beams using positive position feedback controllers with moment pair. Journal of mechanical science and technology, 26(3), 731-740.‏

Li, Y., Xu, D., Fu, Y., & Zhang, J. (2014). Dynamic effects of delayed feedback control on nonlinear vibration isolation floating raft systems. Journal of Sound and Vibration, 333(13), 2665-2676.‏

Gao, X., & Chen, Q. (2014). Nonlinear analysis, design and vibration isolation for a bilinear system with time-delayed cubic velocity feedback. Journal of Sound and Vibration, 333(6), 1562-1576.‏

Abdelhafez, H. M., Nassar, M. E. (2016). Suppression of Vibrations of a Forced and Self- excited Nonlinear Beam by Using Positive Position Feedback Controller PPF. British Journal of Mathematics & Computer Science, 17(4), 1-19.

Jun, L., Xiaobin, L., & Hongxing, H. (2010). Active nonlinear saturation-based control for suppressing the free vibration of a self-excited plant. Communications in Nonlinear Science and Numerical Simulation, 15(4), 1071-1079.‏

Ouakad, H. M., Nayfeh, A. H., Choura, S., & Najar, F. (2015). Nonlinear feedback controller of a microbeam resonator. Journal of Vibration and Control, 21(9), 1680-1697.‏

Xu, J., Chen, Y., & Chung, K. W. (2015). An improved time-delay saturation controller for suppression of nonlinear beam vibration. Nonlinear Dynamics, 82(4), 1691-1707.‏

Yan, G., Fang, M., & Jian, X. (2019). Analysis and Experiment of Time-delayed Optimal Control for Vehicle Suspension System. Journal of Sound and Vibration.‏

Di Ferdinando, M., & Pepe, P. (2019). Sampled-data emulation of dynamic output feedback controllers for nonlinear time-delay systems. Automatica, 99, 120-131.‏

Shen, Y., & Ahmadian, M. (2013). Nonlinear dynamical analysis on four semi-active dynamic vibration absorbers with time delay. Shock and Vibration, 20(4), 649-663.‏

Published
2019-08-21
How to Cite
, Y. A. A., & Mai M. Agwa. (2019). Passive Vibrations Control of Ultrasonic Machining Subjected to Tuned and External Forces. IJRDO-Journal of Applied Science, 5(8), 01-23. https://doi.org/10.53555/as.v5i8.3074