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Abstract: With the extensive use of location based devices, trajectories of various kind of 

moving objects can be collected. As time going on, the amount of trajectory data increases 

exponentially, which brings a series of problems in storage, transmission and analysis. Current 

trajectory compression algorithms mainly focus on position preserving, compress ratio and run 

efficiency, but neglect the movement features in trajectories. In this paper, we propose a novel 

three-stage trajectory compression algorithm based on moving direction of objects, internal 

fluctuation in trajectories and trajectory velocity, which takes full account of movement pattern 

and structure features in trajectories. Firstly, the raw trajectory is compressed based on moving 

direction and the velocity of the object. Then, the trajectory is further simplified according to 

internal fluctuation in raw trajectory. Comprehensive experiments on real dataset show that: not 

only the efficiency and effectiveness of the proposed work is better, but also the reservation of 

local movement features of moving objects and internal characteristic information in trajectories 

is more detailed. 
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1. Introduction 

In recent years, with the rapid growth of GPS-equipped mobile devices, sensor network and 

wireless communication technologies, various kinds of moving objects can be traced all over the 

world. These data are the foundation for us to analyze activities and patterns for moving objects. 

However, the popularity of these devices and technologies has leading to an exponential growth 

in the amount of trajectory data as time going on. For instance, there are 5000 taxis in a city and 

we track the trajectory of each taxi by sampling its position once every 5 seconds, so we will 

overwhelm 2 GB of storage capacity for a single day to store these data. Such enormous volume 

of data has brought several problems [1] in transmission, computation, storage and so on. 

To overcome these difficulties, it is necessary to find some efficient and effective compression 

methods to solve the following several tasks [1, 2]. Firstly, compression methods should reduce 

the data space and make trajectory easy to store and transfer. Secondly, compression methods may 

remove redundant information and reserve useful information of trajectory data which will make 

it easy for deeply analyzing trajectory data. Therefore, the aim of data compression is to minimize 

the volume of data while ensuring not losing important features by some strategies. For moving 

objects trajectories, it is essential to preserve as much features, including position, direction, corner 

and velocity as possible while removing redundant and trivial sampling points.  

Currently, a number of trajectory compression algorithms have been studied. In many researches, 

the main idea of line simplification is widely used to reduce the number of trajectory points by 

introducing a bounded error, which loses some information after compression [2, 3]. This kind of 

line simplification is mainly derived from the well-known Douglas-Peucker (DP) algorithm [4], 

which makes use of the divide-and-conquer approach to keep the most important points of a 

polyline. In order to take both spatial and temporal dimension into account, Meratnia et al. [3] 

replace the perpendicular Euclidean distance with Synchronous Euclidean Distance (SED) in DP 
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algorithm, with which, compressed data is confirmed be superiority than the former ones. Besides 

DP algorithm, there are also various trajectory compression algorithm exists in the literature. Each 

offers a different trade off among compression time, compression ratio, and accuracy. Uniform 

sampling, which is fast and can archive the specified compression ratio by sampling trajectory at 

fixed time interval, but introduce large spatial and SED errors. To-Down Time Ratio (TD-TR) 

algorithm [3], is a variant of DP algorithm with SED instead of spatial error. It’s running time is 

O(n2). Opening Window (OW) algorithm [5] is an online approximate line simplification 

algorithm by introducing a slide window. OW algorithm runs with the window anchored at the 

first point, and gradually checks the forthcoming points until the spatial error is greater than the 

given threshold. The spatial error is the distance of the point to the line segment between the first 

point and the last point in the window. Then it executes iteratively until the last point of trajectory 

is included. The running time of OW algorithm is O(n2). Opening Window Time Ratio (OW-TR) 

algorithm [3] is an extension to OW algorithm which takes temporal data into account and uses 

SED to represent the error. Like OW algorithm, the worst running time of OW-TR is O(n2). Dead 

Reckoning (DR) algorithm [6] is an efficient compression algorithm that considers not only spatial 

dimension but also velocity information. DR algorithm firstly marks the start point p0 as the key 

point, and stores p0 and its velocity in the compressed representation. Then the next point pi is 

estimated whether it’s location within the SED threshold from p0. If true then continue the next 

point of pi, else pi is marked as the key point and stored to the compressed representation with its 

velocity. The DR algorithm will execute iteratively to the end of trajectory. The computation 

complexity of DR algorithm is O(n). 

All these algorithms take the spatial and temporal information as the basis to reduce points in 

trajectory, and do not take trajectory movement patterns and internal features into consideration. 

Due to the trivialness and redundancy of trajectory data, almost all trajectory compress algorithms 

are lossy. When we query trajectories from database or discover the hidden knowledge from 

trajectories, we hope the compressed trajectory can represent their raw ones well. However, if the 

movement pattern and internal features are neglected, applications, such as trajectory clustering 

[7, 8], outlier detection [9] and activity discovery [10] may be not so accuracy as we expected.  

In literature [7], Lee pointed out the important attributes for trajectory clustering, and in our 

previous work [8], we gave the formal definitions on trajectory structure. In general, trajectory 

structure feature can be derived mainly by the corner and velocity at sampling points.  

In order to solve the problem mentioned above, we present a novel trajectory compression 

algorithm based on corner and velocity, with which, trajectory movement patterns and internal 

features can be retained when compressing trajectories. Therefore, a two-phase compression 

algorithm is proposed in this paper, which called Trajectory Simplification Algorithm based on 

Structure Features (SF).  

To summarize, the main contributions of this paper are as follows: 

1) This paper firstly compresses trajectories based on moving direction of objects, which can 

better keep the outline geometrical characters of trajectories. 

2) Then, the algorithm proposed in this paper simplifies trajectories according to internal 

fluctuations in trajectories, which will better keep the movement pattern and structure features in 

trajectories. 

3) Finally, this algorithm compresses trajectories by trajectory velocity, which can better keep 

the movement pattern in trajectories. 

4) To verify the performance of SF, we carry out a comprehensive comparison with other 

algorithms such as DP and TD-SB.  
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The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3 

describes our compression motivation and related definitions. In section 4, the compression 

algorithm SF is introduced in detail. An evaluation of SF and other algorithms is provided in 

section 5. Finally, Section 6 draws conclusions and points out some possible research opportunities. 

 

2. Related works 

The rapid development of various subjects and the wide usage of Internet provide a great deal 

of technical supports and a powerful motivation for the rapid development of trajectory data 

compression technologies. The existing compression methods can be classified into 3 categories, 

according to their compression ideas. 

1) Distance-based trajectory compression 

Many researchers have devoted their talent to compress trajectories by deciding whether the 

sampling point is reserved based on distance (such as perpendicular distance, Synchronized 

Euclidean distance and so on) since 1973. In literature [5], Douglas and Peucker proposed an 

algorithm called Douglas-Peucker algorithm, which recursively selects the point whose 

perpendicular distance is greater than given threshold until all points reserved meet the condition. 

Its advantage is the translation and rotation invariance, namely, when the trajectory and threshold 

have been given, the compression result is certain. However, there is an apparent drawback about 

Douglas-Peucker (DP) algorithm, which only considered spatial information, that is because 

temporal information also contain in trajectory data. In order to overcome this shortcoming, 

Meratnia et al. put forward a top-down time-ratio algorithm (TD-TR) which is a transformation of 

DP algorithm taking a full consideration of spatiotemporal characteristics by replacing 

perpendicular distance with SED distance [3,6]. This method has a higher accuracy than DP 

algorithm and also has the advantage of translation and rotation invariance. Both DP and TD-TR 

are not suitable for real-time applications, so Jonathan Muckell proposed the Spatial QUalIty 

Simplification Heuristic (SQUISH) method based on the priority queue data structure, which 

prioritizes the most important points in a trajectory stream [24]. Three years later, Muckell 

proposed a new version of SQUISH, called SQUISH-E (Spatial QUalIty Simplification Heuristic 

- Extended), which has the flexibility of tuning compression with respect to compression ratio and 

error [25]. 

2) Velocity-based trajectory compression 

The researches on compressing trajectory data based on velocity are not perfect by now. A 

famous velocity-based trajectory compression is top-down speed-based algorithm proposed by 

Meratnia[3]. The algorithm improved the existing compression techniques by exploiting the 

spatiotemporal information hiding in the time series, which can be made by analyzing the derived 

speeds at subsequent of the trajectory [3]. It is trivial to implement, but the accuracy is lower than 

DP and TD-TR algorithm. An online algorithm called Dead Reckoning algorithm proposed by 

Trajcevski[26] compressed trajectory by estimating the successor point through the current point 

and its velocity. It has a high execution efficiency for the computational complexity O(n). And the 

primary disadvantages are that it tends to achieve lower compression ratios than other techniques 

introduced in this section and it does not allow users to set the target compression ratio. 

3) Semantic-based trajectory compression 

Considering the different environment where objects move, compressing trajectory in road 

network has attracted many attentions [18-22]. Schmid and Richter proposed a new and novel 

representation for trajectories that replaces trajectory data by the form of semantic information in 

road network [8]. Zheng proposed a new framework, namely paralleled road-network-based 
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trajectory compression, to effectively compress trajectory data under road network constraints [7]. 

PRESS proposed a novel representation for trajectories to separate the spatial representation of a 

trajectory from the temporal representation and proposed a Hybrid Spatial Compression (HSC) 

algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and 

temporal information of trajectories respectively. 

Although these methods in literatures [9-14, 23] have a high computing performance, they only 

considered the outline geometrical characteristics of trajectories and ignore the movement pattern 

and structure features in trajectories, such as moving direction of objects, internal fluctuation in 

trajectories as well as trajectory velocity or acceleration and so on. However, in reality, it is 

essential for trajectory compression to reserve moving objects’ movement pattern and structure 

features in trajectories, which is useful in data mining field, e.g. studying animals’ migratory traces, 

behavior and living situations, as well as animal migration research and hurricanes, tornados and 

ocean currents prediction. 

To tackle the above disadvantages, this paper proposes a new compression algorithm based on 

the structure features of trajectories (SF algorithm). At the end of this paper, we analyze the 

influence of various parameters on SF algorithm proposed in this paper and compared SF 

algorithm with other algorithms. The experimental results show that it can effectively compress 

trajectory data and keep movement pattern and structure features in trajectories, especially when 

the motion of a moving object is frequently changing in a certain area. The compression results of 

SF algorithm reserve more information (e.g. corner information, movement pattern and other 

structure features) compared with other algorithms. 

 

3. Motivation and related definitions 

3.1 Motivation 

In many location-based studies and applications, trajectories are viewed as the sequence of 

sampling points, and the movement pattern as well as internal features are often neglected. 

Therefore, traditional compression algorithms always extensively pursuit the compression ratio by 

trading off compression time and accuracy. In literature [11], this kind of algorithms is called 

position-preserving trajectory simplification (PPTS) algorithms. However, these position-

preserving algorithms may not suitable for many situations.  

In order to preserve the movement pattern and internal features, some encoding-based 

algorithms are mentioned in the Master Degree Thesis of Xiaoying Liu [12], such as Huffman 

Coding, ZIP, LMZA2, can compress trajectories without any loss and preserve detailed trajectory 

information. However, encoding and decoding processes themselves are also time consuming and 

memory increasing. Moreover, when we query trajectory data from moving object database, it is 

quite difficult to find useful information from coded data. And after decoding, we still have to face 

the large amount of redundant trajectory data. Therefore, encoding-based algorithms are not 

suitable for trajectory compression. 

To illustrate this motivation, we give an example to discuss the movement pattern and internal 

features in trajectories. 

Given three raw trajectories T1, T2 and T3 as shown in Figure 1 (a)(i), (b)(i) and (c)(i) respectively. 

Each trajectory has 10 points (p0, p1, …, p9), and all points are sampled with fixed interval. T1 is a 

straight trajectory, and if an existing PPTS algorithm with SED as error bound is used to compress 

T1, we can get a simplified version of T1 as T1’ shown in Figure 1 (a)(ii). However, as we can see 

that the velocity of p0 to p3 and p7 to p9 is quite different from that of p3 to p7. In a city transport 

system, the part p3 to p7 may be more important than others in data analysis. Therefore, we should 

IJRDO - Journal of Computer Science Engineering                              ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 4



 

present a new technique to preserve this part as T1” shown in Figure 1 (a)(iii). T2 is a circular 

trajectory with two smooth parts p0 to p3, p6 to p9 and a fluctuant part p3 to p6. We can get a 

simplified trajectory as T2’ shown in Figure 1 (b)(ii) with existing PPTS algorithms. However, the 

fluctuant part is lost in T2’, and this part may be crucial in moving object activity discovery [10]. 

Therefore, this part should be preserved in compression process as T2” in Figure 1 (b)(iii) for deep 

analysis. T3 is a curve trajectory with two semicircular parts p0 to p4 and p5 to p9. Based on existing 

PPTS algorithms, we can get a simplified trajectory as T3’ shown in Figure 1 (c)(ii). However, the 

semicircular part is lost in T3’, and this part may be also crucial in moving object activity discovery. 

Therefore, this part should be compressed as T3” in Figure 1 (c)(iii) for not losing useful 

information. 

p1 p2 p3 p7… p9p8p0  p9p0  p3 p7 p9p0  
(a)(i)T1 (a)(ii)T1’ (a)(iii)T1’’ 

p1 p4

p6p0
p5

p7p8p9

p2
p3

 

p6p0

p9

p3

 

p4

p6p0
p5

p9

p3

 
(b)(i)T2 (b)(ii)T2’ (b)(iii)T2’’ 

p1

p0

p2 p3

p4

p5
p6

p7

p8

p9

 
p0

p9

 
p0

p2

p4

p6

p9

 
(c)(i)T3 (c)(ii)T3’ (c)(iii)T3’’ 

Figure 1. A motivating example 

Therefore, with this idea, we propose a novel trajectory compression algorithm based on 

structure features to preserve as much movement pattern and internal features as possible. 

 

3.2 Related definitions 

In order to formally describe the proposed compression algorithm, we firstly give some 

definitions on related concepts such as trajectory corner and velocity. The definition of trajectory 

given in our previous work [8] is also available in this paper. TD (Trajectory Database) denotes 

trajectory set TD={TR1, TR2, …, TRn}, and TRi is the i-th trajectory. A Trajectory is a chronological 

sequence consisted of multi-dimensional locations, which is denoted by TRi= {P1, P2, …, 

Pm}(1≤i≤n). Pj(1≤j≤m), a sampling point in TRi, is represented as <Locationj, Tj>, which means 

that the position of the moving object is Locationj at time Tj. Locationj is a multi-dimensional 

location point, for instance, (xj, yj) is a 2-dimensional location point. 

As aforementioned, corner and velocity are two important structure attributes of trajectories, 

and they are used as the compression metrics for deciding whether the points should be persevered 

or not. For convenience, we introduce symbols VA as the arriving speed and VL as the leaving speed 

at each point. The definitions on trajectory corner and velocity as follows. 

Definition 1. Trajectory Corner [8]: the turn angle θ of two adjacent trajectory segments reflects 

the moving tendency at the sampling point p.  

As shown in Figure 2, the included angle at sampling points between adjacent segments is 

denoted as α, and the turn angle in the moving direction marked with θi and θn-1 are two trajectory 
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corners. In order to simplify the calculation, the clockwise corner (θi) is marked as positive and 

the anticlockwise corner (θn-1) is marked as negative. 

In Figure 2, trajectory segment a and b are two adjacent edges with angle α represented as vector 

�⃗� and �⃗⃗� respectively, and c is the virtual opposite edge of angle α represented as vector 𝑐. Then 

angle αi at pi can be calculated by formula (1): 

𝛼𝑖 = arccos⁡(
|�⃗⃗�|2+|�⃗⃗�|

2
−|𝑐|2

2∙|�⃗⃗�|∙|�⃗⃗�|
)                                 (1) 

Here, |�⃗�|, |�⃗⃗�| and |𝑐| are the length of trajectory segments. Trajectory segment vectors �⃗� and⁡�⃗⃗� 

are two directed adjacent edges with angle α and can be denoted as �⃗� = (𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1) 

and �⃗⃗� = (𝑥𝑖+1 − 𝑥𝑖, 𝑦𝑖+1 − 𝑦𝑖). Segment vector 𝑐 is the virtual opposite edge of angle α, denoted 

as 𝑐 = (𝑥𝑖+1 − 𝑥𝑖−1, 𝑦𝑖+1 − 𝑦𝑖−1).The trajectory corner θi at pi can be calculated by formula (2): 

𝜃𝑖 = {
𝜋 − 𝛼𝑖, 𝑖𝑓(�⃗� × �⃗⃗� ≤ 0)

𝛼𝑖 − 𝜋, 𝑖𝑓(�⃗� × �⃗⃗� > 0)
                               (2) 

Based on trajectory corner, we give the definition on movement direction and internal 

fluctuation to decompose the trajectory structure features. 

Definition 2. Movement Direction: For a given trajectory, moving direction is represented by 

the accumulation of turn angles at each sampling points which can reflects the moving tendency 

of an object. 

We use Dθ to denote the movement pattern of a trajectory. According to Definition 2, Dθ is an 

accumulation value of turn angles. In the trajectory simplification algorithms of this paper, turn 

angles at each sampling points are calculated and accumulated to Dθ sequentially. Once Dθ is 

greater than the given threshold, and we can say that movement direction changes great and the 

point where direction changes should be marked as a candidate point to be preserved, then the Dθ 

should be reset and newly accumulated from the next point. The formula of Dθ is given as: Dθ 

=∑θi. 

Definition 3. Internal Fluctuation: For a given trajectory T, the internal fluctuation is that there 

exists several continuous points, at which trajectory corners change sharply, denoted by Fε,k (ε is 

the threshold of corner, and k is the threshold of continuous points). Fε,k means that there are at 

least k continuous points, where trajectory corners greater than ε. 

In T2 of Figure 2(b), corners at sampling points from p3 to p6 change greater than others. 

Therefore, we can infer that there are something happened at trajectory segment p3 to p6. 

Traditional simplification algorithms may neglect this part and remove these points making 

internal features lost. In order to avoid noise distortion, k is often set greater than 2. 

Trajectories are the discretized sampling points with location and timestamp. Therefore, the 

velocity information associated with trajectories are often denoted by their average value. In order 

to describe the instantaneous moving tendency approximately, we derive two speed vector from 

trajectories. One is called arriving speed and another is called leaving speed. 

Definition 4. Arriving Speed: For a given point pi (1<i≤n, n is the length of the trajectory), the 

arriving speed is the average speed that arrives to pi, denoted by VA. Its computational 

representation is the mean speed of the closet segment before pi, shown as formula (3). 

𝑉𝐴𝑖 =
√(𝑥𝑖−𝑥𝑖−1)2+(𝑦𝑖−𝑦𝑖−1)2

𝑡𝑖−𝑡𝑖−1
                                (3) 

Definition 5. Leaving Speed: For a given point pi (1≤i<n, n is the length of the trajectory), the 

leaving speed is the average speed that leaves from pi, denoted by VL. Its computational 

representation is the mean speed of the closet segment after pi, shown as formula (4). 
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𝑉𝐿𝑖 =
√(𝑥𝑖+1−𝑥𝑖)

2+(𝑦𝑖+1−𝑦𝑖)
2

𝑡𝑖+1−𝑡𝑖
                                (4) 

The arriving speed (VA) and leaving speed (VL) at pi are shown in Figure 2. Note that, the arriving 

speed at p1 and the leaving speed at pn are 0, for there are no succeed point of pn and no precursor 

point of p1.  

θi  

VL  VA  

p1(x1, y1, t1)  

Pi-1(xi-1, yi-1, ti-1)  

pi(xi, yi, ti)  

pn(xn, yn, tn)  

Pi+1(xi+1, yi+1, ti+1)  

Pn-1(xn-1, yn-1, tn-1)  
θn-1   

α   

α   

 
Figure 3. An example of trajectory corner and velocity 

With the combination of VA and VL, we can easily analysis the motion characteristics of moving 

objects in a certain area at certain time. For example, if at some points, VA is smaller than VL, then 

we can know that the moving object speeds up at these points, otherwise, we can say the moving 

object slows down. Therefore, we give the definition on the velocity. 

Definition 6. Trajectory Velocity: The speed deviation of two adjacent trajectory segments 

reflects the motion characteristics at the sampling point p. 

We use Vi as speed deviation at sampling point pi (1≤i≤n), and Vi = abs(VAi- VLi). The function 

abs() is used to calculate the absolute value of speed deviation, because we just need to identify at 

which trajectory point the speed changes great. In Figure 1 (a)(i), we can see at points p0, p3, p7 

and p9, speed values change greater than those of others, so these points should be preserved in 

(a)(iii) according to the idea of our algorithm. 

Definition 7. Trajectory Deviation Angle: For a given trajectory T and compressed trajectory 

Tc, the trajectory deviation angle between raw trajectory segments and compressed trajectory 

segments reflects the offset errors of compressed trajectory. 

We use γi to denote trajectory deviation angle at sampling point pi (1≤i≤n). As shown in Figure 

3, pj, pj+1 and pn are the points in compressed trajectory, as well as pi is the ith point in raw 

trajectory. Therefore, γi can be calculated by formula (5). 

𝛾𝑖 = arccos⁡(
|𝑝𝑗𝑝𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

2
+|𝑝𝑗𝑝𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

2
−|𝑝𝑖𝑝𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|

2

2∙|𝑝𝑗𝑝𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |∙|𝑝𝑗𝑝𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
)        (5) 

 
Figure 4. An example of trajectory deviation angle 

 

4. Trajectory Simplification Algorithm based on Structure Features 

Existing trajectory compression methods pay too much attention on efficiency, compression 

ratio as well as run time, and ignore movement pattern and internal features of trajectories. 

Therefore, in order to pursue high efficiency, it is easy to lose the internal information. The SF 

algorithm proposed in this paper is a new breakthrough to traditional ones, and pays more attention 

on preserving trajectory movement pattern and internal features while removing some trivial and 

redundant points. SF algorithm which includes two phases. Firstly, the raw trajectory is 
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compressed based on moving direction and the velocity of the object. Then, the trajectory is further 

simplified according to internal fluctuation in raw trajectory. 

In the process of simplifying the trajectory, we refer to the OW [5] algorithm and do appropriate 

modification to make it more applicable for our SF algorithm. 

 
Figure 4 An example of trajectory simplification 

As shown in figure 4, 𝐴𝐵⃗⃗⃗⃗  ⃗ denotes the moving direction of trajectory. We definite the minimum 

allowed speed v
－

=V×(1－v) and the maximum allowed speed v
＋

=V×(1＋v). Where, V is the 

trajectory velocity and v is the threshold of trajectory velocity. We sample a point every t interval 

in the trajectory points sampling. According to the simple physical equation, we can get distance 

using velocity and time. Therefore, we can get the radius of inner circle r
－

=t×v
－

 and the radius 

of outer circle r
＋

=t×v
＋
. We can draw a concentric circle at point B with r

－ and r
＋
. Later, we draw 

a sector based on the direction threshold in the direction of 𝐴𝐵⃗⃗⃗⃗  ⃗. We call this sector safe area, SA 

in short. If the next point in the SA, we will reserve it. Otherwise, we delete it. Now, we only 

consider the elements of velocity and direction but not take internal fluctuation into consideration. 

In definition 3, we set ε as the threshold of corner. Fε,k means that there are at least k continuous 

points, where trajectory corners greater than ε. In order to avoid noise distortion, k is often set 

greater than 2. So, if k＞2, even this point in the SA, we still reserve it. In figure 4, point C is not 

in the SA(C) and is not the kth continuous point to be greater than the threshold. So, we delete it. 

In order to better introduce the algorithm proposed in this paper, it is necessary for a formal 

description of the symbols used in section 4. The symbols used in SF algorithm and their meaning 

are summarized in Table 1. 

Table 1 Parameters and their meaning 

Parameter Meaning 

T Raw trajectory. 

Tc Trajectory compressed by SF algorithm. 

|•| The absolute value of •. 

k The counter of internal fluctuation. 

pi The i-th point in a trajectory, pi=<xi, yi, ti>. 

β moving direction threshold. 

δ internal fluctuation threshold. 

v trajectory velocity threshold. 
 

4.1 Algorithm description 

In order to keep the moving characteristics and the internal characteristics information in 

trajectories, SF algorithm removes the redundant trajectory points based on the structure features 

of trajectories, such as moving direction of moving objects, internal fluctuation in trajectories and 

trajectory velocity. SF algorithm is a two-phase algorithm, firstly, it reserves the points according 
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to the appropriate modified OW algorithm (Lines 01-05 and 08-11); then, it reserves the internal 

fluctuations in raw trajectory, while meeting the condition of internal fluctuation (Lines 06-07). 

This algorithm will be end until all of the points in raw trajectory have been processed. 

 

Algorithm: Trajectory Simplification Algorithm based on Structure Features (SF) 

Input: Raw trajectory (T), moving direction threshold (β), internal fluctuation 

threshold (δ), trajectory velocity threshold (v) 

Output: Compressed trajectory (Tc) 

01) k ← 0;  // Set the counter of internal fluctuation k is 0 

02) for each pi  T do 

03)     calculate SA(pi);  //Calculate the safe area with moving direction threshold 

(β) and trajectory velocity threshold (v) 

04)      if pi in SA(pi) then 

05)          k++; 

06)          if k > 2 then 

07)              Tc ← the coordinate information of pi;   //Save coordinate 

information of pi in Tc, when the value of k is greater than 2 

08)      else 

09)          Tc ← the coordinate information of pi; 

10)         k ← 0;  // Set the counter of internal fluctuation k is 0 

11) end for  

end 

4.2 Discussion 

The moving direction threshold (β), internal fluctuation threshold (δ) and trajectory velocity 

threshold (v) in SF algorithm are main parameters which affect computational cost, compression 

ratio and matching  effect of algorithms. The setting of compression threshold β, δ and v in SF 

algorithm should combine statistical learning theories and specific application fields. The higher 

β is set, the more important features in trajectories will be lost and the worse the holistically fitting 

effect of trajectories will be, while the lower β is set, the more trajectory mutations or exceptions 

caused by sampling frequency and equipment error will be kept as well as the lower the 

compression ratio will be. Similar to β, the higher δ is set, the more movement pattern and structure 

features will be lost, while the lower δ is set, the more redundant points will be reserved. And, the 

higher v is set, the more important features and local motion characteristics in trajectories will be 

lost, while the lower v is set, the more trajectory mutations or exceptions caused by sampling 

frequency and equipment error will be kept. The computational complexity of SF algorithm is 

O(n), where n is the number of points in the trajectory. 

 

5. Experiments and analysis 

In order to validate the algorithm proposed in this paper, a trajectory data analysis system 

(TrajMiner) is developed, using Microsoft Visual Studio .Net 2008. The environment of 

experiments includes: Windows 7, Intel(R) Core(TM) i5-3470 3.20GHz CPU with 4G Ram. The 

data set stored in Microsoft SQL Server 2008 R2 is GeoLife which includes 8890 trajectories 

consist of 23860589 sampling points. Longitude, Latitude, and sampling time are extracted from 

the GeoLife data set to facilitate a clean comparison of the different algorithms. 

5.1 Parameter estimation 

For the algorithm given in this paper, only 3 parameters are required, including moving direction 
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threshold (β), internal fluctuation threshold (δ) and trajectory velocity threshold (v). The guidence 

of βrms, δrms and vrms can be calculated by formula (6), (7) and (8), for the root mean square (RMS) 

is a kind of numerical indicators measuring accuracy of measurement. The guideline value of βrms, 

δrms and vrms are not the absolute thresholds and the actual thresholds need to adjust the guideline 

values by combining statistical learning theories and specific application fields as well as the 

practical experiences of experts in the certain field. 

𝛽𝑟𝑚𝑠 = √
1

𝑛−2
× ∑ 𝛾𝑖

2𝑛−1
𝑖=2         (6) 

𝛿𝑟𝑚𝑠 = √
1

𝑛−2
× ∑ 𝜃𝑖

2𝑛−1
𝑖=2         (7) 

𝑣𝑟𝑚𝑠 = √
1

𝑛−2
× ∑ 𝑉𝑖

2𝑛−1
𝑖=2         (8) 

This paper verifies the performance of SF algorithm by compressing 10 trajectories with 

different parameters. As shown in Table 2, the compression time of SF only depends on the size 

of trajectory data. The setting of β, δ and v don’t have a significant impact on the running speed of 

SF algorithm, but they have a significant impact on the compression ratio and fitting effect. 

Table 2 Comparison and performance analysis of SF algorithm with different parameters  

Trajectory 

ID 
β δ v 

Trajectory 

size 

Points of 

compressed 

trajectory 

Time 

cost 

(ms) 

Compression 

ratio (%) 

#1 

π/6 2π/3 2 

2359 

331 2.5884  85.97  

π/3 2π/3 2 285 2.4708  87.92  

π/6 3π/4 2 331 2.5884  85.97  

π/6 2π/3 1 638 2.4362  72.95  

π/12 2π/3 2 381 2.4375  83.85  

π/6 5π/6 2 331 2.5884  85.97  

π/6 2π/3 4 235 2.4503  90.04  

#2 

π/6 2π/3 2 

11225 

4529 12.3894  59.65  

π/3 2π/3 2 3169 12.2380  71.77  

π/6 3π/4 2 4512 11.7907  59.80  

π/6 2π/3 1 5511 12.1033  50.90  

π/12 2π/3 2 5998 12.4000  46.57  

π/6 5π/6 2 4502 11.8193  59.89  

π/6 2π/3 4 4044 11.7552  63.97  

#3 

π/6 2π/3 2 

20429 

5169 19.7831  74.70  

π/3 2π/3 2 3192 18.4062  84.38  

π/6 3π/4 2 5155 18.2745  74.77  

π/6 2π/3 1 6228 19.1605  69.51  

π/12 2π/3 2 7962 19.9240  61.03  

π/6 5π/6 2 5155 18.2745  74.77  

π/6 2π/3 4 4859 18.2193  76.22  

#4 
π/6 2π/3 2 

30045 
15786 33.7668  47.46  

π/3 2π/3 2 10864 32.6536  63.84  
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π/6 3π/4 2 15733 32.2145  47.64  

π/6 2π/3 1 17325 32.5335  42.34  

π/12 2π/3 2 20292 33.8998  32.46  

π/6 5π/6 2 15682 31.0957  47.80  

π/6 2π/3 4 15033 31.0235  49.97  

#5 

π/6 2π/3 2 

40570 

13606 39.0404  66.46  

π/3 2π/3 2 8290 38.3921  79.57  

π/6 3π/4 2 13590 38.2782  66.50  

π/6 2π/3 1 14883 38.3669  63.32  

π/12 2π/3 2 20462 40.4066  49.56  

π/6 5π/6 2 13572 38.1535  66.55  

π/6 2π/3 4 13281 38.0535  67.26  

#6 

π/6 2π/3 2 

51303 

14432 50.5754  71.87  

π/3 2π/3 2 8149 49.1586  84.12  

π/6 3π/4 2 14059 49.0569  72.60  

π/6 2π/3 1 17253 50.5724  66.37  

π/12 2π/3 2 23738 51.2369  53.73  

π/6 5π/6 2 14059 49.0569  72.60  

π/6 2π/3 4 13764 48.8781  73.17  

#7 

π/6 2π/3 2 

65119 

20061 67.7166  69.19  

π/3 2π/3 2 12438 66.7228  80.90  

π/6 3π/4 2 19407 66.6007  70.20  

π/6 2π/3 1 24306 66.6765  62.67  

π/12 2π/3 2 31256 68.0664  52.00  

π/6 5π/6 2 19407 66.6007  70.20  

π/6 2π/3 4 19519 66.3790  70.03  

#8 

π/6 2π/3 2 

69338 

21667 71.1693  68.75  

π/3 2π/3 2 12966 70.9684  81.30  

π/6 3π/4 2 21058 70.4685  69.63  

π/6 2π/3 1 27591 70.5840  60.21  

π/12 2π/3 2 33377 73.5876  51.86  

π/6 5π/6 2 21058 70.4685  69.63  

π/6 2π/3 4 20253 70.4120  70.79  

#9 

π/6 2π/3 2 

80704 

27723 83.4300  63.65  

π/3 2π/3 2 16673 80.9934  79.34  

π/6 3π/4 2 27691 80.4775  65.69  

π/6 2π/3 1 32261 80.5784  60.03  

π/12 2π/3 2 41666 85.3437  48.37  

π/6 5π/6 2 27617 80.2627  63.78  

π/6 2π/3 4 26225 80.1145  67.50  

#10 π/6 2π/3 2 91554 29132 96.9351  68.18  
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π/3 2π/3 2 15938 91.2527  82.59  

π/6 3π/4 2 29056 90.9111  68.26  

π/6 2π/3 1 32853 91.1335  64.12  

π/12 2π/3 2 47821 98.2886  47.77  

π/6 5π/6 2 29056 90.9111  68.26  

π/6 2π/3 4 28598 90.3195  68.76  

 
Figure 5. Compression time of SF algorithm with different parameters 

This paper analyzes movement trends and internal characteristics of trajectories starting from 

the motion characteristics and trajectory structures, which takes a full consideration of moving 

objects’ characteristic attributes, such as velocity value and velocity corner etc. Therefore, SF 

algorithm has a higher reliability and credibility, when it reserves the motion characteristics and 

local characteristic information of trajectories. Figure 5 shows the influence of trajectory size on 

compression time with different parameters. As it shows, the trajectory size will have an obvious 

influence on compression speed of SF algorithm, when its size is very small. The influence of 

trajectory size on compression speed will lower, as trajectory size increases; while, the influence 

of trajectory size on compression speed will enhance, when trajectory size reaches some order of 

magnitude. Hence, the computational complexity of SF algorithm is O(nlogn), where n is the 

number of points in the trajectory. In addition, Figure 5 shows that the setting of velocity corner 

threshold has an obvious influence on compression speed and the setting of velocity value 

threshold doesn’t have an obvious influence on compression speed. So, compression speed of SF 
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algorithm mainly relies on the size of trajectories and the setting of velocity corner threshold. 

5.2 Performance analysis 

In order to verify the performance of SF as well as advantages and disadvantages between SF 

and existing algorithms, 3 methods are introduced in this paper to measure the information loss 

degree which are respectively denoted as SED comparison, DTW comparison and Corner 

comparison.  
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(a) A schematic of SED comparison 
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(b) A schematic of DTW comparison 
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(c) A schematic of Corner comparison 

Figure 6. A schematic of information loss degree 

1) SED comparison: SEDc(T, Tc) reflects the degree of position deviation between the 

compressed trajectory and the raw one, and the description of SED comparison is given in Figure 

6(a) which can be calculated by formula (9), (10), (11) and (12). 

SEDc(𝑇, 𝑇𝑐) =
SEDmax(𝑇,𝑇𝑐)+SEDavg(𝑇,𝑇𝑐)+SEDmin(𝑇,𝑇𝑐)

3
               (9) 

SEDmax(𝑇, 𝑇𝑐) = max𝑖=1
𝑛 ⁡(SED(𝑜𝑝𝑖, 𝑐𝑝𝑖))                   (10) 

SEDavg(𝑇, 𝑇𝑐) =
∑ SED(𝑜𝑝𝑖,𝑐𝑝𝑖)

𝑛
𝑖=1

𝑛
                        (11) 

SEDmin(𝑇, 𝑇𝑐) = min𝑖=1
𝑛 ⁡(SED(𝑜𝑝𝑖, 𝑐𝑝𝑖))                   (12) 

Here, opi and cpi respectively are the i-th point of T and Tc whose length are both n. max() and 

min() respectively are the maximum value and minimum value among the SED distance between 

the compressed trajectory and the raw trajectory. SEDmax(T, Tc) is the maximum SED distance 

between the compressed trajectory and the raw trajectory. Similarly, SEDavg(T, Tc) and SEDmin(T, 

Tc) respectively are the average and minimum SED distance between the compressed trajectory 

and the raw trajectory. SED comparison calculates information loss degree by the mean of 

maximum, average and minimum SED distance. 

2) DTW comparison: DTWc(T, Tc) reflects the degree of position deviation between the 

compressed trajectory and the raw trajectory. DTW distance is specifically defined as that in the 

case of ensuring the order of trajectory points, it completes the local scaling of time dimension by 

repeating the previous points, and makes the minimum distance between trajectories as DTW 

distance. The DTW distance between the compressed trajectory and the raw trajectory which can 

be calculated by formula (13) can be shown as Figure 6(b). 
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DTW(𝑇, 𝑇𝑐) =

{
 
 

 
 

0 𝑚 = 𝑛 = 0
∞ 𝑚 = 0||𝑛 = 0

SED(𝑜𝑝1, 𝑐𝑝1) + min{

DTW(Rest(𝑇), Rest(𝑇𝑐))

DTW(Rest(𝑇), 𝑇𝑐)
DTW(𝑇, Rest(𝑇𝑐))

𝑜𝑡ℎ𝑒𝑟𝑠
  (13) 

Here, the length of T and Tc respectively are m and n. SED(op1, cp1) is the SED distance between 

two points op1 and cp1, which respectively are the first point of T and Tc. Rest(T) and Rest(Tc) are 

the remaining trajectory after removing the first sampling point. min is a function that calculates 

the minimum value among three parameters. 

The DTWc(T, Tc) can be calculated by formula (14) according to formula (13). 

DTWc(T, Tc)=|DTW(T, Tc)|       (14) 

DTW comparison calculates the information loss degree by DTW distance which can measure 

the similarity between trajectories after the local scaling of time dimension by the scaling operation 

of time dimension. 

3) Corner comparison: Cornerc(T, Tc) reflects the degree of motion direction deviation between 

the final moving object and the raw moving object shown as Figure 6(c). Corner comparison can 

be calculated by formula (15). 

Cornerc(𝑇, 𝑇𝑐) =
∑ ((|𝜃𝑖−𝜃𝑗|)/(|𝜃𝑖|+|𝜃𝑗|))

min⁡(𝑚,𝑛)
1

𝑚+𝑛
     (15) 

Here, the length of T and Tc respectively are m and n. Corner comparison calculates the 

information loss degree by the speed corner of moving objects. 

To verify the performance of SF algorithm, it is compared with DP and TD-SB in this paper by 

compressing 5 trajectories. This section compares the algorithms across multiple performance 

metrics including matching effect, compression speed and compression ratio as well as information 

loss degree. 

 

 

 

(a)Holistic compression effect figure (b)Partial enlarged figure of A in Fig. (a) 

 
 

(c)Partial enlarged figure of B in Fig. (a) (d)Partial enlarged figure of C in Fig. (a) 

Figure 7. Effect figure of DP (ε=0.0005), TD-SB (v=2) and SF (β=π/3, δ=2π/3 and 
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v=4) compressing trajectory 1 

As shown in Figure 7, SF not only keeps the holistic external shape of origin trajectory (Fig. 

7(a)), but also keeps the local motion characteristics of moving objects in detail (Fig. 7(b), Fig. 

7(c) and Fig. 7(d)). In Table 2, compared with DP and TD-SB, SF has a faster compression speed, 

but a lower compression ratio than DP. There are two main reasons as follow: (1) SF algorithm 

takes full consideration of the motion characteristics which is beneficial to the reservation of 

holistic motion characteristics. (2) SF algorithm emphatically analyzes the characteristic 

information contained in trajectories which is beneficial to keep the local motion characteristics of 

moving objects. 

 

Table 2 Performance comparison between different algorithms 

Trajectory 

ID 

Algorithm 

name 

Correlation 

parameters 

Trajectory 

size 

Compression 

time (ms) 

Compression 

ratio (%) 

#1 

DP ε=0.0005 

2359 

7.4857 95.13 

TD-SB v=2 19.1639 89.87 

SF 
β=π/3, δ=2π/3, 

v=4 
3.2859 90.04 

#2 

DP ε=0.0001 

11225 

37.3477 89.94 

TD-SB v=2.5 144.4079 90.32 

SF 
β=2π/3, 

δ=5π/6, v=5 
17.8605 87.55 

#3 

DP ε=0.0001 

4201 

13.4007 90.43 

TD-SB v=3.5 31.1312 90.26 

SF 
β=2π/3, 

δ=5π/6, v=6 
10.0121 90.53 

#4 

DP ε=0.0001 

545 

1.5155 82.75 

TD-SB v=2.5 3.0669 84.4 

SF 
β=2π/3, 

δ=5π/6, v=6 
0.8073 83.85 

#5 

DP ε=0.0001 

212 

0.3874 88.68 

TD-SB v=2.5 0.9613 88.68 

SF 
β=π/3, δ=5π/6, 

v=6 
0.2331 90.1 

 

Table 3 Comparison of information loss degree 

Trajector

y ID 

Algorith

m name 

Correlatio

n 

parameters 

Compressi

on ratio 

(%) 

Information Loss 

SED 

compariso

n 

DTW 

compariso

n 

Corner 

compariso

n 

#1 

DP ε=0.0005 95.13 0.003716 0.561906 0.344291 

TD-SB v=2 89.87 0.004675 2.558741 0.340755 

SF 

β=π/3, 

δ=2π/3, 

v=4 

90.04 0.004438 2.035024 0.340490 

#2 
DP ε=0.0001 89.94 0.013970 1.409007 0.325382 

TD-SB v=2.5 90.32 0.003484 4.241242 0.339533 
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SF 

β=2π/3, 

δ=5π/6, 

v=5 

87.55 0.009492 6.090871 0.324233 

#3 

DP ε=0.0001 90.43 0.001881 0.187654 0.323714 

TD-SB v=3.5 90.26 0.002610 1.670170 0.342875 

SF 

β=2π/3, 

δ=5π/6, 

v=6 

90.53 0.001898 0.455062 0.301833 

#4 

DP ε=0.0001 82.75 0.000343 0.026520 0.288413 

TD-SB v=2.5 84.4 0.001005 0.233393 0.300421 

SF 

β=2π/3, 

δ=5π/6, 

v=6 

83.85 0.000957 0.124727 0.281325 

#5 

DP ε=0.0001 88.68 0.000841 0.047030 0.301000 

TD-SB v=2.5 88.68 0.001423 0.163142 0.318713 

SF 

β=π/3, 

δ=5π/6, 

v=6 

90.1 0.000938 0.024417 0.273268 

To describe the experimental results more intuitionistic, this paper converts matching effect into 

numeric by the calculation methods of information loss degree given in this section. Information 

loss degrees caused by DP, TD-SB and SF with same or similar compression ratio are recorded in 

Table 3 which includes SED comparison and DTW comparison which reflect holistic matching 

effect of trajectories, as well as Corner comparison which reflects internal matching effect in 

trajectories. Generally, the smaller information loss degree is, the better matching effect of an 

algorithm is, namely, the higher reliability of an algorithm is. As shown in Table 4, when the 

compression ratio of DP, TD-SB and SF is same or similar, the Corner comparison of SF is smallest 

which indicates that SF has a better effect in keeping internal characteristics and motion 

characteristics of moving objects. Most of the SED comparison of SF is lower than TD-SB and 

higher than DP, so SF is superior to TD-SB and slightly inferior to DP while keeping the holistic 

characteristic of trajectories. Most of the DTW comparison of SF is between DP and TD-SB in 

Table 3, which indicates SF is superior to TD-SB and slightly inferior to DP in keeping the holistic 

characteristic of trajectories. Comprehensive analyzing the experimental results above, SF can not 

only keep the motion characteristics and internal characteristic information of trajectories, but also 

keep the holistic characteristics of trajectories. As a consequence, SF is more suitable for the 

compression of moving objects whose motion characteristics are required to be kept in detail. 

 

6. Conclusions 

This paper, which starts from motion characteristics of moving objects, introduces moving 

objects’ velocity corner and velocity value at sampling points, as well as takes a full consideration 

of motion characteristics and characteristic information contained in trajectories. First, this paper 

proposes SF that determines retained points by velocity corner of moving objects to compress 

trajectory data. After that, SF smooths the compressed trajectory according to velocity value of 

moving objects, and finally finishes the compression. The experimental results show that: the 

algorithm proposed in this paper not only has high efficiency, but also can preferably keep local 

motion characteristics of moving objects. Thus, SF is a highly efficient trajectory data compression 

algorithm whose compression results are more significance in practice and very suitable for the 
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compression of moving objects whose motion characteristics are required to be kept in detail. 
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