

Trajectory Simplification Algorithm based on Structure Features

Mingjun Zhu

China University of Mining and Technology

Abstract: With the extensive use of location based devices, trajectories of various kind of

moving objects can be collected. As time going on, the amount of trajectory data increases

exponentially, which brings a series of problems in storage, transmission and analysis. Current

trajectory compression algorithms mainly focus on position preserving, compress ratio and run

efficiency, but neglect the movement features in trajectories. In this paper, we propose a novel

three-stage trajectory compression algorithm based on moving direction of objects, internal

fluctuation in trajectories and trajectory velocity, which takes full account of movement pattern

and structure features in trajectories. Firstly, the raw trajectory is compressed based on moving

direction and the velocity of the object. Then, the trajectory is further simplified according to

internal fluctuation in raw trajectory. Comprehensive experiments on real dataset show that: not

only the efficiency and effectiveness of the proposed work is better, but also the reservation of

local movement features of moving objects and internal characteristic information in trajectories

is more detailed.

Keywords: GPS trajectory, data compression, velocity corner, velocity value, movement feature

1. Introduction

In recent years, with the rapid growth of GPS-equipped mobile devices, sensor network and

wireless communication technologies, various kinds of moving objects can be traced all over the

world. These data are the foundation for us to analyze activities and patterns for moving objects.

However, the popularity of these devices and technologies has leading to an exponential growth

in the amount of trajectory data as time going on. For instance, there are 5000 taxis in a city and

we track the trajectory of each taxi by sampling its position once every 5 seconds, so we will

overwhelm 2 GB of storage capacity for a single day to store these data. Such enormous volume

of data has brought several problems [1] in transmission, computation, storage and so on.

To overcome these difficulties, it is necessary to find some efficient and effective compression

methods to solve the following several tasks [1, 2]. Firstly, compression methods should reduce

the data space and make trajectory easy to store and transfer. Secondly, compression methods may

remove redundant information and reserve useful information of trajectory data which will make

it easy for deeply analyzing trajectory data. Therefore, the aim of data compression is to minimize

the volume of data while ensuring not losing important features by some strategies. For moving

objects trajectories, it is essential to preserve as much features, including position, direction, corner

and velocity as possible while removing redundant and trivial sampling points.

Currently, a number of trajectory compression algorithms have been studied. In many researches,

the main idea of line simplification is widely used to reduce the number of trajectory points by

introducing a bounded error, which loses some information after compression [2, 3]. This kind of

line simplification is mainly derived from the well-known Douglas-Peucker (DP) algorithm [4],

which makes use of the divide-and-conquer approach to keep the most important points of a

polyline. In order to take both spatial and temporal dimension into account, Meratnia et al. [3]

replace the perpendicular Euclidean distance with Synchronous Euclidean Distance (SED) in DP

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 1

algorithm, with which, compressed data is confirmed be superiority than the former ones. Besides

DP algorithm, there are also various trajectory compression algorithm exists in the literature. Each

offers a different trade off among compression time, compression ratio, and accuracy. Uniform

sampling, which is fast and can archive the specified compression ratio by sampling trajectory at

fixed time interval, but introduce large spatial and SED errors. To-Down Time Ratio (TD-TR)

algorithm [3], is a variant of DP algorithm with SED instead of spatial error. It’s running time is

O(n2). Opening Window (OW) algorithm [5] is an online approximate line simplification

algorithm by introducing a slide window. OW algorithm runs with the window anchored at the

first point, and gradually checks the forthcoming points until the spatial error is greater than the

given threshold. The spatial error is the distance of the point to the line segment between the first

point and the last point in the window. Then it executes iteratively until the last point of trajectory

is included. The running time of OW algorithm is O(n2). Opening Window Time Ratio (OW-TR)

algorithm [3] is an extension to OW algorithm which takes temporal data into account and uses

SED to represent the error. Like OW algorithm, the worst running time of OW-TR is O(n2). Dead

Reckoning (DR) algorithm [6] is an efficient compression algorithm that considers not only spatial

dimension but also velocity information. DR algorithm firstly marks the start point p0 as the key

point, and stores p0 and its velocity in the compressed representation. Then the next point pi is

estimated whether it’s location within the SED threshold from p0. If true then continue the next

point of pi, else pi is marked as the key point and stored to the compressed representation with its

velocity. The DR algorithm will execute iteratively to the end of trajectory. The computation

complexity of DR algorithm is O(n).

All these algorithms take the spatial and temporal information as the basis to reduce points in

trajectory, and do not take trajectory movement patterns and internal features into consideration.

Due to the trivialness and redundancy of trajectory data, almost all trajectory compress algorithms

are lossy. When we query trajectories from database or discover the hidden knowledge from

trajectories, we hope the compressed trajectory can represent their raw ones well. However, if the

movement pattern and internal features are neglected, applications, such as trajectory clustering

[7, 8], outlier detection [9] and activity discovery [10] may be not so accuracy as we expected.

In literature [7], Lee pointed out the important attributes for trajectory clustering, and in our

previous work [8], we gave the formal definitions on trajectory structure. In general, trajectory

structure feature can be derived mainly by the corner and velocity at sampling points.

In order to solve the problem mentioned above, we present a novel trajectory compression

algorithm based on corner and velocity, with which, trajectory movement patterns and internal

features can be retained when compressing trajectories. Therefore, a two-phase compression

algorithm is proposed in this paper, which called Trajectory Simplification Algorithm based on

Structure Features (SF).

To summarize, the main contributions of this paper are as follows:

1) This paper firstly compresses trajectories based on moving direction of objects, which can

better keep the outline geometrical characters of trajectories.

2) Then, the algorithm proposed in this paper simplifies trajectories according to internal

fluctuations in trajectories, which will better keep the movement pattern and structure features in

trajectories.

3) Finally, this algorithm compresses trajectories by trajectory velocity, which can better keep

the movement pattern in trajectories.

4) To verify the performance of SF, we carry out a comprehensive comparison with other

algorithms such as DP and TD-SB.

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 2

The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3

describes our compression motivation and related definitions. In section 4, the compression

algorithm SF is introduced in detail. An evaluation of SF and other algorithms is provided in

section 5. Finally, Section 6 draws conclusions and points out some possible research opportunities.

2. Related works

The rapid development of various subjects and the wide usage of Internet provide a great deal

of technical supports and a powerful motivation for the rapid development of trajectory data

compression technologies. The existing compression methods can be classified into 3 categories,

according to their compression ideas.

1) Distance-based trajectory compression

Many researchers have devoted their talent to compress trajectories by deciding whether the

sampling point is reserved based on distance (such as perpendicular distance, Synchronized

Euclidean distance and so on) since 1973. In literature [5], Douglas and Peucker proposed an

algorithm called Douglas-Peucker algorithm, which recursively selects the point whose

perpendicular distance is greater than given threshold until all points reserved meet the condition.

Its advantage is the translation and rotation invariance, namely, when the trajectory and threshold

have been given, the compression result is certain. However, there is an apparent drawback about

Douglas-Peucker (DP) algorithm, which only considered spatial information, that is because

temporal information also contain in trajectory data. In order to overcome this shortcoming,

Meratnia et al. put forward a top-down time-ratio algorithm (TD-TR) which is a transformation of

DP algorithm taking a full consideration of spatiotemporal characteristics by replacing

perpendicular distance with SED distance [3,6]. This method has a higher accuracy than DP

algorithm and also has the advantage of translation and rotation invariance. Both DP and TD-TR

are not suitable for real-time applications, so Jonathan Muckell proposed the Spatial QUalIty

Simplification Heuristic (SQUISH) method based on the priority queue data structure, which

prioritizes the most important points in a trajectory stream [24]. Three years later, Muckell

proposed a new version of SQUISH, called SQUISH-E (Spatial QUalIty Simplification Heuristic

- Extended), which has the flexibility of tuning compression with respect to compression ratio and

error [25].

2) Velocity-based trajectory compression

The researches on compressing trajectory data based on velocity are not perfect by now. A

famous velocity-based trajectory compression is top-down speed-based algorithm proposed by

Meratnia[3]. The algorithm improved the existing compression techniques by exploiting the

spatiotemporal information hiding in the time series, which can be made by analyzing the derived

speeds at subsequent of the trajectory [3]. It is trivial to implement, but the accuracy is lower than

DP and TD-TR algorithm. An online algorithm called Dead Reckoning algorithm proposed by

Trajcevski[26] compressed trajectory by estimating the successor point through the current point

and its velocity. It has a high execution efficiency for the computational complexity O(n). And the

primary disadvantages are that it tends to achieve lower compression ratios than other techniques

introduced in this section and it does not allow users to set the target compression ratio.

3) Semantic-based trajectory compression

Considering the different environment where objects move, compressing trajectory in road

network has attracted many attentions [18-22]. Schmid and Richter proposed a new and novel

representation for trajectories that replaces trajectory data by the form of semantic information in

road network [8]. Zheng proposed a new framework, namely paralleled road-network-based

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 3

trajectory compression, to effectively compress trajectory data under road network constraints [7].

PRESS proposed a novel representation for trajectories to separate the spatial representation of a

trajectory from the temporal representation and proposed a Hybrid Spatial Compression (HSC)

algorithm and error Bounded Temporal Compression (BTC) algorithm to compress the spatial and

temporal information of trajectories respectively.

Although these methods in literatures [9-14, 23] have a high computing performance, they only

considered the outline geometrical characteristics of trajectories and ignore the movement pattern

and structure features in trajectories, such as moving direction of objects, internal fluctuation in

trajectories as well as trajectory velocity or acceleration and so on. However, in reality, it is

essential for trajectory compression to reserve moving objects’ movement pattern and structure

features in trajectories, which is useful in data mining field, e.g. studying animals’ migratory traces,

behavior and living situations, as well as animal migration research and hurricanes, tornados and

ocean currents prediction.

To tackle the above disadvantages, this paper proposes a new compression algorithm based on

the structure features of trajectories (SF algorithm). At the end of this paper, we analyze the

influence of various parameters on SF algorithm proposed in this paper and compared SF

algorithm with other algorithms. The experimental results show that it can effectively compress

trajectory data and keep movement pattern and structure features in trajectories, especially when

the motion of a moving object is frequently changing in a certain area. The compression results of

SF algorithm reserve more information (e.g. corner information, movement pattern and other

structure features) compared with other algorithms.

3. Motivation and related definitions

3.1 Motivation

In many location-based studies and applications, trajectories are viewed as the sequence of

sampling points, and the movement pattern as well as internal features are often neglected.

Therefore, traditional compression algorithms always extensively pursuit the compression ratio by

trading off compression time and accuracy. In literature [11], this kind of algorithms is called

position-preserving trajectory simplification (PPTS) algorithms. However, these position-

preserving algorithms may not suitable for many situations.

In order to preserve the movement pattern and internal features, some encoding-based

algorithms are mentioned in the Master Degree Thesis of Xiaoying Liu [12], such as Huffman

Coding, ZIP, LMZA2, can compress trajectories without any loss and preserve detailed trajectory

information. However, encoding and decoding processes themselves are also time consuming and

memory increasing. Moreover, when we query trajectory data from moving object database, it is

quite difficult to find useful information from coded data. And after decoding, we still have to face

the large amount of redundant trajectory data. Therefore, encoding-based algorithms are not

suitable for trajectory compression.

To illustrate this motivation, we give an example to discuss the movement pattern and internal

features in trajectories.

Given three raw trajectories T1, T2 and T3 as shown in Figure 1 (a)(i), (b)(i) and (c)(i) respectively.

Each trajectory has 10 points (p0, p1, …, p9), and all points are sampled with fixed interval. T1 is a

straight trajectory, and if an existing PPTS algorithm with SED as error bound is used to compress

T1, we can get a simplified version of T1 as T1’ shown in Figure 1 (a)(ii). However, as we can see

that the velocity of p0 to p3 and p7 to p9 is quite different from that of p3 to p7. In a city transport

system, the part p3 to p7 may be more important than others in data analysis. Therefore, we should

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 4

present a new technique to preserve this part as T1” shown in Figure 1 (a)(iii). T2 is a circular

trajectory with two smooth parts p0 to p3, p6 to p9 and a fluctuant part p3 to p6. We can get a

simplified trajectory as T2’ shown in Figure 1 (b)(ii) with existing PPTS algorithms. However, the

fluctuant part is lost in T2’, and this part may be crucial in moving object activity discovery [10].

Therefore, this part should be preserved in compression process as T2” in Figure 1 (b)(iii) for deep

analysis. T3 is a curve trajectory with two semicircular parts p0 to p4 and p5 to p9. Based on existing

PPTS algorithms, we can get a simplified trajectory as T3’ shown in Figure 1 (c)(ii). However, the

semicircular part is lost in T3’, and this part may be also crucial in moving object activity discovery.

Therefore, this part should be compressed as T3” in Figure 1 (c)(iii) for not losing useful

information.

p1 p2 p3 p7… p9p8p0 p9p0 p3 p7 p9p0
(a)(i)T1 (a)(ii)T1’ (a)(iii)T1’’

p1 p4

p6p0
p5

p7p8p9

p2
p3

p6p0

p9

p3

p4

p6p0
p5

p9

p3

(b)(i)T2 (b)(ii)T2’ (b)(iii)T2’’

p1

p0

p2 p3

p4

p5
p6

p7

p8

p9

p0

p9

p0

p2

p4

p6

p9

(c)(i)T3 (c)(ii)T3’ (c)(iii)T3’’

Figure 1. A motivating example

Therefore, with this idea, we propose a novel trajectory compression algorithm based on

structure features to preserve as much movement pattern and internal features as possible.

3.2 Related definitions

In order to formally describe the proposed compression algorithm, we firstly give some

definitions on related concepts such as trajectory corner and velocity. The definition of trajectory

given in our previous work [8] is also available in this paper. TD (Trajectory Database) denotes

trajectory set TD={TR1, TR2, …, TRn}, and TRi is the i-th trajectory. A Trajectory is a chronological

sequence consisted of multi-dimensional locations, which is denoted by TRi= {P1, P2, …,

Pm}(1≤i≤n). Pj(1≤j≤m), a sampling point in TRi, is represented as <Locationj, Tj>, which means

that the position of the moving object is Locationj at time Tj. Locationj is a multi-dimensional

location point, for instance, (xj, yj) is a 2-dimensional location point.

As aforementioned, corner and velocity are two important structure attributes of trajectories,

and they are used as the compression metrics for deciding whether the points should be persevered

or not. For convenience, we introduce symbols VA as the arriving speed and VL as the leaving speed

at each point. The definitions on trajectory corner and velocity as follows.

Definition 1. Trajectory Corner [8]: the turn angle θ of two adjacent trajectory segments reflects

the moving tendency at the sampling point p.

As shown in Figure 2, the included angle at sampling points between adjacent segments is

denoted as α, and the turn angle in the moving direction marked with θi and θn-1 are two trajectory

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 5

corners. In order to simplify the calculation, the clockwise corner (θi) is marked as positive and

the anticlockwise corner (θn-1) is marked as negative.

In Figure 2, trajectory segment a and b are two adjacent edges with angle α represented as vector

�⃗� and �⃗⃗� respectively, and c is the virtual opposite edge of angle α represented as vector 𝑐. Then

angle αi at pi can be calculated by formula (1):

𝛼𝑖 = arccos⁡(
|�⃗⃗�|2+|�⃗⃗�|

2
−|𝑐|2

2∙|�⃗⃗�|∙|�⃗⃗�|
) (1)

Here, |�⃗�|, |�⃗⃗�| and |𝑐| are the length of trajectory segments. Trajectory segment vectors �⃗� and⁡�⃗⃗�

are two directed adjacent edges with angle α and can be denoted as �⃗� = (𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1)

and �⃗⃗� = (𝑥𝑖+1 − 𝑥𝑖, 𝑦𝑖+1 − 𝑦𝑖). Segment vector 𝑐 is the virtual opposite edge of angle α, denoted

as 𝑐 = (𝑥𝑖+1 − 𝑥𝑖−1, 𝑦𝑖+1 − 𝑦𝑖−1).The trajectory corner θi at pi can be calculated by formula (2):

𝜃𝑖 = {
𝜋 − 𝛼𝑖, 𝑖𝑓(�⃗� × �⃗⃗� ≤ 0)

𝛼𝑖 − 𝜋, 𝑖𝑓(�⃗� × �⃗⃗� > 0)
 (2)

Based on trajectory corner, we give the definition on movement direction and internal

fluctuation to decompose the trajectory structure features.

Definition 2. Movement Direction: For a given trajectory, moving direction is represented by

the accumulation of turn angles at each sampling points which can reflects the moving tendency

of an object.

We use Dθ to denote the movement pattern of a trajectory. According to Definition 2, Dθ is an

accumulation value of turn angles. In the trajectory simplification algorithms of this paper, turn

angles at each sampling points are calculated and accumulated to Dθ sequentially. Once Dθ is

greater than the given threshold, and we can say that movement direction changes great and the

point where direction changes should be marked as a candidate point to be preserved, then the Dθ

should be reset and newly accumulated from the next point. The formula of Dθ is given as: Dθ

=∑θi.

Definition 3. Internal Fluctuation: For a given trajectory T, the internal fluctuation is that there

exists several continuous points, at which trajectory corners change sharply, denoted by Fε,k (ε is

the threshold of corner, and k is the threshold of continuous points). Fε,k means that there are at

least k continuous points, where trajectory corners greater than ε.

In T2 of Figure 2(b), corners at sampling points from p3 to p6 change greater than others.

Therefore, we can infer that there are something happened at trajectory segment p3 to p6.

Traditional simplification algorithms may neglect this part and remove these points making

internal features lost. In order to avoid noise distortion, k is often set greater than 2.

Trajectories are the discretized sampling points with location and timestamp. Therefore, the

velocity information associated with trajectories are often denoted by their average value. In order

to describe the instantaneous moving tendency approximately, we derive two speed vector from

trajectories. One is called arriving speed and another is called leaving speed.

Definition 4. Arriving Speed: For a given point pi (1<i≤n, n is the length of the trajectory), the

arriving speed is the average speed that arrives to pi, denoted by VA. Its computational

representation is the mean speed of the closet segment before pi, shown as formula (3).

𝑉𝐴𝑖 =
√(𝑥𝑖−𝑥𝑖−1)2+(𝑦𝑖−𝑦𝑖−1)2

𝑡𝑖−𝑡𝑖−1
 (3)

Definition 5. Leaving Speed: For a given point pi (1≤i<n, n is the length of the trajectory), the

leaving speed is the average speed that leaves from pi, denoted by VL. Its computational

representation is the mean speed of the closet segment after pi, shown as formula (4).

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 6

𝑉𝐿𝑖 =
√(𝑥𝑖+1−𝑥𝑖)

2+(𝑦𝑖+1−𝑦𝑖)
2

𝑡𝑖+1−𝑡𝑖
 (4)

The arriving speed (VA) and leaving speed (VL) at pi are shown in Figure 2. Note that, the arriving

speed at p1 and the leaving speed at pn are 0, for there are no succeed point of pn and no precursor

point of p1.

θi

VL VA

p1(x1, y1, t1)

Pi-1(xi-1, yi-1, ti-1)

pi(xi, yi, ti)

pn(xn, yn, tn)

Pi+1(xi+1, yi+1, ti+1)

Pn-1(xn-1, yn-1, tn-1)
θn-1

α

α

Figure 3. An example of trajectory corner and velocity

With the combination of VA and VL, we can easily analysis the motion characteristics of moving

objects in a certain area at certain time. For example, if at some points, VA is smaller than VL, then

we can know that the moving object speeds up at these points, otherwise, we can say the moving

object slows down. Therefore, we give the definition on the velocity.

Definition 6. Trajectory Velocity: The speed deviation of two adjacent trajectory segments

reflects the motion characteristics at the sampling point p.

We use Vi as speed deviation at sampling point pi (1≤i≤n), and Vi = abs(VAi- VLi). The function

abs() is used to calculate the absolute value of speed deviation, because we just need to identify at

which trajectory point the speed changes great. In Figure 1 (a)(i), we can see at points p0, p3, p7

and p9, speed values change greater than those of others, so these points should be preserved in

(a)(iii) according to the idea of our algorithm.

Definition 7. Trajectory Deviation Angle: For a given trajectory T and compressed trajectory

Tc, the trajectory deviation angle between raw trajectory segments and compressed trajectory

segments reflects the offset errors of compressed trajectory.

We use γi to denote trajectory deviation angle at sampling point pi (1≤i≤n). As shown in Figure

3, pj, pj+1 and pn are the points in compressed trajectory, as well as pi is the ith point in raw

trajectory. Therefore, γi can be calculated by formula (5).

𝛾𝑖 = arccos⁡(
|𝑝𝑗𝑝𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

2
+|𝑝𝑗𝑝𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |

2
−|𝑝𝑖𝑝𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗|

2

2∙|𝑝𝑗𝑝𝑗+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |∙|𝑝𝑗𝑝𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
) (5)

Figure 4. An example of trajectory deviation angle

4. Trajectory Simplification Algorithm based on Structure Features

Existing trajectory compression methods pay too much attention on efficiency, compression

ratio as well as run time, and ignore movement pattern and internal features of trajectories.

Therefore, in order to pursue high efficiency, it is easy to lose the internal information. The SF

algorithm proposed in this paper is a new breakthrough to traditional ones, and pays more attention

on preserving trajectory movement pattern and internal features while removing some trivial and

redundant points. SF algorithm which includes two phases. Firstly, the raw trajectory is

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 7

compressed based on moving direction and the velocity of the object. Then, the trajectory is further

simplified according to internal fluctuation in raw trajectory.

In the process of simplifying the trajectory, we refer to the OW [5] algorithm and do appropriate

modification to make it more applicable for our SF algorithm.

Figure 4 An example of trajectory simplification

As shown in figure 4, 𝐴𝐵⃗⃗⃗⃗ ⃗ denotes the moving direction of trajectory. We definite the minimum

allowed speed v
－

=V×(1－v) and the maximum allowed speed v
＋

=V×(1＋v). Where, V is the

trajectory velocity and v is the threshold of trajectory velocity. We sample a point every t interval

in the trajectory points sampling. According to the simple physical equation, we can get distance

using velocity and time. Therefore, we can get the radius of inner circle r
－

=t×v
－

 and the radius

of outer circle r
＋

=t×v
＋
. We can draw a concentric circle at point B with r

－ and r
＋
. Later, we draw

a sector based on the direction threshold in the direction of 𝐴𝐵⃗⃗⃗⃗ ⃗. We call this sector safe area, SA

in short. If the next point in the SA, we will reserve it. Otherwise, we delete it. Now, we only

consider the elements of velocity and direction but not take internal fluctuation into consideration.

In definition 3, we set ε as the threshold of corner. Fε,k means that there are at least k continuous

points, where trajectory corners greater than ε. In order to avoid noise distortion, k is often set

greater than 2. So, if k＞2, even this point in the SA, we still reserve it. In figure 4, point C is not

in the SA(C) and is not the kth continuous point to be greater than the threshold. So, we delete it.

In order to better introduce the algorithm proposed in this paper, it is necessary for a formal

description of the symbols used in section 4. The symbols used in SF algorithm and their meaning

are summarized in Table 1.

Table 1 Parameters and their meaning

Parameter Meaning

T Raw trajectory.

Tc Trajectory compressed by SF algorithm.

|•| The absolute value of •.

k The counter of internal fluctuation.

pi The i-th point in a trajectory, pi=<xi, yi, ti>.

β moving direction threshold.

δ internal fluctuation threshold.

v trajectory velocity threshold.

4.1 Algorithm description

In order to keep the moving characteristics and the internal characteristics information in

trajectories, SF algorithm removes the redundant trajectory points based on the structure features

of trajectories, such as moving direction of moving objects, internal fluctuation in trajectories and

trajectory velocity. SF algorithm is a two-phase algorithm, firstly, it reserves the points according

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 8

to the appropriate modified OW algorithm (Lines 01-05 and 08-11); then, it reserves the internal

fluctuations in raw trajectory, while meeting the condition of internal fluctuation (Lines 06-07).

This algorithm will be end until all of the points in raw trajectory have been processed.

Algorithm: Trajectory Simplification Algorithm based on Structure Features (SF)

Input: Raw trajectory (T), moving direction threshold (β), internal fluctuation

threshold (δ), trajectory velocity threshold (v)

Output: Compressed trajectory (Tc)

01) k ← 0; // Set the counter of internal fluctuation k is 0

02) for each pi  T do

03) calculate SA(pi); //Calculate the safe area with moving direction threshold

(β) and trajectory velocity threshold (v)

04) if pi in SA(pi) then

05) k++;

06) if k > 2 then

07) Tc ← the coordinate information of pi; //Save coordinate

information of pi in Tc, when the value of k is greater than 2

08) else

09) Tc ← the coordinate information of pi;

10) k ← 0; // Set the counter of internal fluctuation k is 0

11) end for

end

4.2 Discussion

The moving direction threshold (β), internal fluctuation threshold (δ) and trajectory velocity

threshold (v) in SF algorithm are main parameters which affect computational cost, compression

ratio and matching effect of algorithms. The setting of compression threshold β, δ and v in SF

algorithm should combine statistical learning theories and specific application fields. The higher

β is set, the more important features in trajectories will be lost and the worse the holistically fitting

effect of trajectories will be, while the lower β is set, the more trajectory mutations or exceptions

caused by sampling frequency and equipment error will be kept as well as the lower the

compression ratio will be. Similar to β, the higher δ is set, the more movement pattern and structure

features will be lost, while the lower δ is set, the more redundant points will be reserved. And, the

higher v is set, the more important features and local motion characteristics in trajectories will be

lost, while the lower v is set, the more trajectory mutations or exceptions caused by sampling

frequency and equipment error will be kept. The computational complexity of SF algorithm is

O(n), where n is the number of points in the trajectory.

5. Experiments and analysis

In order to validate the algorithm proposed in this paper, a trajectory data analysis system

(TrajMiner) is developed, using Microsoft Visual Studio .Net 2008. The environment of

experiments includes: Windows 7, Intel(R) Core(TM) i5-3470 3.20GHz CPU with 4G Ram. The

data set stored in Microsoft SQL Server 2008 R2 is GeoLife which includes 8890 trajectories

consist of 23860589 sampling points. Longitude, Latitude, and sampling time are extracted from

the GeoLife data set to facilitate a clean comparison of the different algorithms.

5.1 Parameter estimation

For the algorithm given in this paper, only 3 parameters are required, including moving direction

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 9

threshold (β), internal fluctuation threshold (δ) and trajectory velocity threshold (v). The guidence

of βrms, δrms and vrms can be calculated by formula (6), (7) and (8), for the root mean square (RMS)

is a kind of numerical indicators measuring accuracy of measurement. The guideline value of βrms,

δrms and vrms are not the absolute thresholds and the actual thresholds need to adjust the guideline

values by combining statistical learning theories and specific application fields as well as the

practical experiences of experts in the certain field.

𝛽𝑟𝑚𝑠 = √
1

𝑛−2
× ∑ 𝛾𝑖

2𝑛−1
𝑖=2 (6)

𝛿𝑟𝑚𝑠 = √
1

𝑛−2
× ∑ 𝜃𝑖

2𝑛−1
𝑖=2 (7)

𝑣𝑟𝑚𝑠 = √
1

𝑛−2
× ∑ 𝑉𝑖

2𝑛−1
𝑖=2 (8)

This paper verifies the performance of SF algorithm by compressing 10 trajectories with

different parameters. As shown in Table 2, the compression time of SF only depends on the size

of trajectory data. The setting of β, δ and v don’t have a significant impact on the running speed of

SF algorithm, but they have a significant impact on the compression ratio and fitting effect.

Table 2 Comparison and performance analysis of SF algorithm with different parameters

Trajectory

ID
β δ v

Trajectory

size

Points of

compressed

trajectory

Time

cost

(ms)

Compression

ratio (%)

#1

π/6 2π/3 2

2359

331 2.5884 85.97

π/3 2π/3 2 285 2.4708 87.92

π/6 3π/4 2 331 2.5884 85.97

π/6 2π/3 1 638 2.4362 72.95

π/12 2π/3 2 381 2.4375 83.85

π/6 5π/6 2 331 2.5884 85.97

π/6 2π/3 4 235 2.4503 90.04

#2

π/6 2π/3 2

11225

4529 12.3894 59.65

π/3 2π/3 2 3169 12.2380 71.77

π/6 3π/4 2 4512 11.7907 59.80

π/6 2π/3 1 5511 12.1033 50.90

π/12 2π/3 2 5998 12.4000 46.57

π/6 5π/6 2 4502 11.8193 59.89

π/6 2π/3 4 4044 11.7552 63.97

#3

π/6 2π/3 2

20429

5169 19.7831 74.70

π/3 2π/3 2 3192 18.4062 84.38

π/6 3π/4 2 5155 18.2745 74.77

π/6 2π/3 1 6228 19.1605 69.51

π/12 2π/3 2 7962 19.9240 61.03

π/6 5π/6 2 5155 18.2745 74.77

π/6 2π/3 4 4859 18.2193 76.22

#4
π/6 2π/3 2

30045
15786 33.7668 47.46

π/3 2π/3 2 10864 32.6536 63.84

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 10

π/6 3π/4 2 15733 32.2145 47.64

π/6 2π/3 1 17325 32.5335 42.34

π/12 2π/3 2 20292 33.8998 32.46

π/6 5π/6 2 15682 31.0957 47.80

π/6 2π/3 4 15033 31.0235 49.97

#5

π/6 2π/3 2

40570

13606 39.0404 66.46

π/3 2π/3 2 8290 38.3921 79.57

π/6 3π/4 2 13590 38.2782 66.50

π/6 2π/3 1 14883 38.3669 63.32

π/12 2π/3 2 20462 40.4066 49.56

π/6 5π/6 2 13572 38.1535 66.55

π/6 2π/3 4 13281 38.0535 67.26

#6

π/6 2π/3 2

51303

14432 50.5754 71.87

π/3 2π/3 2 8149 49.1586 84.12

π/6 3π/4 2 14059 49.0569 72.60

π/6 2π/3 1 17253 50.5724 66.37

π/12 2π/3 2 23738 51.2369 53.73

π/6 5π/6 2 14059 49.0569 72.60

π/6 2π/3 4 13764 48.8781 73.17

#7

π/6 2π/3 2

65119

20061 67.7166 69.19

π/3 2π/3 2 12438 66.7228 80.90

π/6 3π/4 2 19407 66.6007 70.20

π/6 2π/3 1 24306 66.6765 62.67

π/12 2π/3 2 31256 68.0664 52.00

π/6 5π/6 2 19407 66.6007 70.20

π/6 2π/3 4 19519 66.3790 70.03

#8

π/6 2π/3 2

69338

21667 71.1693 68.75

π/3 2π/3 2 12966 70.9684 81.30

π/6 3π/4 2 21058 70.4685 69.63

π/6 2π/3 1 27591 70.5840 60.21

π/12 2π/3 2 33377 73.5876 51.86

π/6 5π/6 2 21058 70.4685 69.63

π/6 2π/3 4 20253 70.4120 70.79

#9

π/6 2π/3 2

80704

27723 83.4300 63.65

π/3 2π/3 2 16673 80.9934 79.34

π/6 3π/4 2 27691 80.4775 65.69

π/6 2π/3 1 32261 80.5784 60.03

π/12 2π/3 2 41666 85.3437 48.37

π/6 5π/6 2 27617 80.2627 63.78

π/6 2π/3 4 26225 80.1145 67.50

#10 π/6 2π/3 2 91554 29132 96.9351 68.18

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 11

π/3 2π/3 2 15938 91.2527 82.59

π/6 3π/4 2 29056 90.9111 68.26

π/6 2π/3 1 32853 91.1335 64.12

π/12 2π/3 2 47821 98.2886 47.77

π/6 5π/6 2 29056 90.9111 68.26

π/6 2π/3 4 28598 90.3195 68.76

Figure 5. Compression time of SF algorithm with different parameters

This paper analyzes movement trends and internal characteristics of trajectories starting from

the motion characteristics and trajectory structures, which takes a full consideration of moving

objects’ characteristic attributes, such as velocity value and velocity corner etc. Therefore, SF

algorithm has a higher reliability and credibility, when it reserves the motion characteristics and

local characteristic information of trajectories. Figure 5 shows the influence of trajectory size on

compression time with different parameters. As it shows, the trajectory size will have an obvious

influence on compression speed of SF algorithm, when its size is very small. The influence of

trajectory size on compression speed will lower, as trajectory size increases; while, the influence

of trajectory size on compression speed will enhance, when trajectory size reaches some order of

magnitude. Hence, the computational complexity of SF algorithm is O(nlogn), where n is the

number of points in the trajectory. In addition, Figure 5 shows that the setting of velocity corner

threshold has an obvious influence on compression speed and the setting of velocity value

threshold doesn’t have an obvious influence on compression speed. So, compression speed of SF

0

20

40

60

80

100

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0

E
X

E
C

U
T

IO
N

 T
IM

E
 (

M
S

)

NUMBER OF POINTS IN TRAJECTORIES

δ=π/6,β=2π/3,v=2 δ=π/3,β=2π/3,v=2 δ=π/6,β=3π/4,v=2

δ=π/6,β=2π/3,v=1 δ=π/12,β=2π/3,v=2 δ=π/6,β=5π/6,v=2

δ=π/6,β=2π/3,v=4

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 12

algorithm mainly relies on the size of trajectories and the setting of velocity corner threshold.

5.2 Performance analysis

In order to verify the performance of SF as well as advantages and disadvantages between SF

and existing algorithms, 3 methods are introduced in this paper to measure the information loss

degree which are respectively denoted as SED comparison, DTW comparison and Corner

comparison.

1p 2p

3p

4p

5p

6p

9p

8p

7p

12p

13p
14p 15p

10p
11p

SED

SEDmax(T,T)vv

SEDmin(T,T)vv

Original trajectory(T)

Compressed trajectory(Tc)

SED distance

(a) A schematic of SED comparison

1p 2p

3p

4p

5p

6p

9p

8p

7p

12p

13p
14p 15p

10p
11p

DTW

DTW distance

Original trajectory(T)

Compressed trajectory(Tc)

(b) A schematic of DTW comparison

1p 2p

3p

4p

5p

6p

9p

8p

7p

12p

13p
14p 15p

10p
11p

i

j

Original velocity corner

Compressed velocity corner

Original trajectory(T)

Compressed trajectory(Tc)

(c) A schematic of Corner comparison

Figure 6. A schematic of information loss degree

1) SED comparison: SEDc(T, Tc) reflects the degree of position deviation between the

compressed trajectory and the raw one, and the description of SED comparison is given in Figure

6(a) which can be calculated by formula (9), (10), (11) and (12).

SEDc(𝑇, 𝑇𝑐) =
SEDmax(𝑇,𝑇𝑐)+SEDavg(𝑇,𝑇𝑐)+SEDmin(𝑇,𝑇𝑐)

3
 (9)

SEDmax(𝑇, 𝑇𝑐) = max𝑖=1
𝑛 ⁡(SED(𝑜𝑝𝑖, 𝑐𝑝𝑖)) (10)

SEDavg(𝑇, 𝑇𝑐) =
∑ SED(𝑜𝑝𝑖,𝑐𝑝𝑖)

𝑛
𝑖=1

𝑛
 (11)

SEDmin(𝑇, 𝑇𝑐) = min𝑖=1
𝑛 ⁡(SED(𝑜𝑝𝑖, 𝑐𝑝𝑖)) (12)

Here, opi and cpi respectively are the i-th point of T and Tc whose length are both n. max() and

min() respectively are the maximum value and minimum value among the SED distance between

the compressed trajectory and the raw trajectory. SEDmax(T, Tc) is the maximum SED distance

between the compressed trajectory and the raw trajectory. Similarly, SEDavg(T, Tc) and SEDmin(T,

Tc) respectively are the average and minimum SED distance between the compressed trajectory

and the raw trajectory. SED comparison calculates information loss degree by the mean of

maximum, average and minimum SED distance.

2) DTW comparison: DTWc(T, Tc) reflects the degree of position deviation between the

compressed trajectory and the raw trajectory. DTW distance is specifically defined as that in the

case of ensuring the order of trajectory points, it completes the local scaling of time dimension by

repeating the previous points, and makes the minimum distance between trajectories as DTW

distance. The DTW distance between the compressed trajectory and the raw trajectory which can

be calculated by formula (13) can be shown as Figure 6(b).

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 13

DTW(𝑇, 𝑇𝑐) =

{

0 𝑚 = 𝑛 = 0
∞ 𝑚 = 0||𝑛 = 0

SED(𝑜𝑝1, 𝑐𝑝1) + min{

DTW(Rest(𝑇), Rest(𝑇𝑐))

DTW(Rest(𝑇), 𝑇𝑐)
DTW(𝑇, Rest(𝑇𝑐))

𝑜𝑡ℎ𝑒𝑟𝑠
 (13)

Here, the length of T and Tc respectively are m and n. SED(op1, cp1) is the SED distance between

two points op1 and cp1, which respectively are the first point of T and Tc. Rest(T) and Rest(Tc) are

the remaining trajectory after removing the first sampling point. min is a function that calculates

the minimum value among three parameters.

The DTWc(T, Tc) can be calculated by formula (14) according to formula (13).

DTWc(T, Tc)=|DTW(T, Tc)| (14)

DTW comparison calculates the information loss degree by DTW distance which can measure

the similarity between trajectories after the local scaling of time dimension by the scaling operation

of time dimension.

3) Corner comparison: Cornerc(T, Tc) reflects the degree of motion direction deviation between

the final moving object and the raw moving object shown as Figure 6(c). Corner comparison can

be calculated by formula (15).

Cornerc(𝑇, 𝑇𝑐) =
∑ ((|𝜃𝑖−𝜃𝑗|)/(|𝜃𝑖|+|𝜃𝑗|))

min⁡(𝑚,𝑛)
1

𝑚+𝑛
 (15)

Here, the length of T and Tc respectively are m and n. Corner comparison calculates the

information loss degree by the speed corner of moving objects.

To verify the performance of SF algorithm, it is compared with DP and TD-SB in this paper by

compressing 5 trajectories. This section compares the algorithms across multiple performance

metrics including matching effect, compression speed and compression ratio as well as information

loss degree.

(a)Holistic compression effect figure (b)Partial enlarged figure of A in Fig. (a)

(c)Partial enlarged figure of B in Fig. (a) (d)Partial enlarged figure of C in Fig. (a)

Figure 7. Effect figure of DP (ε=0.0005), TD-SB (v=2) and SF (β=π/3, δ=2π/3 and

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 14

v=4) compressing trajectory 1

As shown in Figure 7, SF not only keeps the holistic external shape of origin trajectory (Fig.

7(a)), but also keeps the local motion characteristics of moving objects in detail (Fig. 7(b), Fig.

7(c) and Fig. 7(d)). In Table 2, compared with DP and TD-SB, SF has a faster compression speed,

but a lower compression ratio than DP. There are two main reasons as follow: (1) SF algorithm

takes full consideration of the motion characteristics which is beneficial to the reservation of

holistic motion characteristics. (2) SF algorithm emphatically analyzes the characteristic

information contained in trajectories which is beneficial to keep the local motion characteristics of

moving objects.

Table 2 Performance comparison between different algorithms

Trajectory

ID

Algorithm

name

Correlation

parameters

Trajectory

size

Compression

time (ms)

Compression

ratio (%)

#1

DP ε=0.0005

2359

7.4857 95.13

TD-SB v=2 19.1639 89.87

SF
β=π/3, δ=2π/3,

v=4
3.2859 90.04

#2

DP ε=0.0001

11225

37.3477 89.94

TD-SB v=2.5 144.4079 90.32

SF
β=2π/3,

δ=5π/6, v=5
17.8605 87.55

#3

DP ε=0.0001

4201

13.4007 90.43

TD-SB v=3.5 31.1312 90.26

SF
β=2π/3,

δ=5π/6, v=6
10.0121 90.53

#4

DP ε=0.0001

545

1.5155 82.75

TD-SB v=2.5 3.0669 84.4

SF
β=2π/3,

δ=5π/6, v=6
0.8073 83.85

#5

DP ε=0.0001

212

0.3874 88.68

TD-SB v=2.5 0.9613 88.68

SF
β=π/3, δ=5π/6,

v=6
0.2331 90.1

Table 3 Comparison of information loss degree

Trajector

y ID

Algorith

m name

Correlatio

n

parameters

Compressi

on ratio

(%)

Information Loss

SED

compariso

n

DTW

compariso

n

Corner

compariso

n

#1

DP ε=0.0005 95.13 0.003716 0.561906 0.344291

TD-SB v=2 89.87 0.004675 2.558741 0.340755

SF

β=π/3,

δ=2π/3,

v=4

90.04 0.004438 2.035024 0.340490

#2
DP ε=0.0001 89.94 0.013970 1.409007 0.325382

TD-SB v=2.5 90.32 0.003484 4.241242 0.339533

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 15

SF

β=2π/3,

δ=5π/6,

v=5

87.55 0.009492 6.090871 0.324233

#3

DP ε=0.0001 90.43 0.001881 0.187654 0.323714

TD-SB v=3.5 90.26 0.002610 1.670170 0.342875

SF

β=2π/3,

δ=5π/6,

v=6

90.53 0.001898 0.455062 0.301833

#4

DP ε=0.0001 82.75 0.000343 0.026520 0.288413

TD-SB v=2.5 84.4 0.001005 0.233393 0.300421

SF

β=2π/3,

δ=5π/6,

v=6

83.85 0.000957 0.124727 0.281325

#5

DP ε=0.0001 88.68 0.000841 0.047030 0.301000

TD-SB v=2.5 88.68 0.001423 0.163142 0.318713

SF

β=π/3,

δ=5π/6,

v=6

90.1 0.000938 0.024417 0.273268

To describe the experimental results more intuitionistic, this paper converts matching effect into

numeric by the calculation methods of information loss degree given in this section. Information

loss degrees caused by DP, TD-SB and SF with same or similar compression ratio are recorded in

Table 3 which includes SED comparison and DTW comparison which reflect holistic matching

effect of trajectories, as well as Corner comparison which reflects internal matching effect in

trajectories. Generally, the smaller information loss degree is, the better matching effect of an

algorithm is, namely, the higher reliability of an algorithm is. As shown in Table 4, when the

compression ratio of DP, TD-SB and SF is same or similar, the Corner comparison of SF is smallest

which indicates that SF has a better effect in keeping internal characteristics and motion

characteristics of moving objects. Most of the SED comparison of SF is lower than TD-SB and

higher than DP, so SF is superior to TD-SB and slightly inferior to DP while keeping the holistic

characteristic of trajectories. Most of the DTW comparison of SF is between DP and TD-SB in

Table 3, which indicates SF is superior to TD-SB and slightly inferior to DP in keeping the holistic

characteristic of trajectories. Comprehensive analyzing the experimental results above, SF can not

only keep the motion characteristics and internal characteristic information of trajectories, but also

keep the holistic characteristics of trajectories. As a consequence, SF is more suitable for the

compression of moving objects whose motion characteristics are required to be kept in detail.

6. Conclusions

This paper, which starts from motion characteristics of moving objects, introduces moving

objects’ velocity corner and velocity value at sampling points, as well as takes a full consideration

of motion characteristics and characteristic information contained in trajectories. First, this paper

proposes SF that determines retained points by velocity corner of moving objects to compress

trajectory data. After that, SF smooths the compressed trajectory according to velocity value of

moving objects, and finally finishes the compression. The experimental results show that: the

algorithm proposed in this paper not only has high efficiency, but also can preferably keep local

motion characteristics of moving objects. Thus, SF is a highly efficient trajectory data compression

algorithm whose compression results are more significance in practice and very suitable for the

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 16

compression of moving objects whose motion characteristics are required to be kept in detail.

Acknowledgement This work was supported by the Fundamental Research Funds for the Central

Universities, China (with grant of 2015XKMS085).

Disclosure statement The authors declare that there is no conflict of interests regarding the

publication of this manuscript.

References

[1] Minjie Chen, Mantao Xu, Pasi Franti. Compression of GPS trajectories. In: Proceedings of the

2012 Data Compression Conference (DCC 2012), April 10-12, 2012, Snowbird, Utah, USA, 62-

71.

[2] Nirvana Meratnia, Rolf A. de By. Spatiotemporal compression techniques for moving point

objects. In: Proceedings of the 9th International Conference on Extending Database Technology

(EDBT 2004), March 14-18, 2004, Crete, Greece, 765-782.

[3] Xiaoying Liu. Trajectory data compression via spatial-temporal properties. Master Degree

Thesis, Hong Kong University of Science and Technology, 2014, Hong Kong, China.

[4] Douglas H David, Peucker K Thomas. Algorithms for the reduction of the number of points

required to represent a digitized line or its caricature. Cartographica: The International Journal for

Geographic Information and Geovisualization, 1973, 10(2): 112-122.

[5] Michalis Potamias, Kostas Patroumpas, Timos Sellis. Sampling trajectory streams with

spatiotemporal criteria. In: Proceedings of the 18th International Conference on Scientific and

Statistical Database Management (SSDBM 2006). July 3-5, 2006, Vienna, Austria, 275-284.

[6] Jianjun Liu, Kun Zhao, Philipp Sommer, et al. Bounded quadrant system: error-bounded

trajectory compression on the go. In: Proceedings of the 31th IEEE International Conference on

Data Engineering (ICDE 2015), March 31-April 4, 2015, Seoul, Korea, 987-998.

[7] Birnbaum J, Meng H C, Hwang J H, et al. Similarity-based compression of GPS trajectory data.

In: Proceedings of the 4nd International Conference on Computing for Geospatial Research &

Applications (COM. Geo 2013), July 22-24, 2013, San Jose, CA, USA, 92-95.

[8] Cheng Long, Raymond Chi-Wing Wong, H. V. Jagadish. Direction-preserving trajectory

simplification. Proceedings of the VLDB Endowment, 2013, 6(10): 949-960.

[9] Jae-Gil Lee, Jiawei Han, Xiaolei Li. Trajectory outlier detection: A partition-and-detect

framework. In: Proceedings of the 24th IEEE International Conference on Data Engineering

(ICDE 2008). April 7-12, 2008, Cancún, México, 140-149.

[10] Jae-Gil Lee, Jiawei Han, Kyu-Young Whang. Trajectory clustering: a partition-and-group

framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management

of Data (SIGMOD 2007). June 11-14, 2007, Beijing, China, 593-604.

[11] Guan Yuan, Shixiong Xia, Lei Zhang, Yong Zhou and Cheng Ji. An efficient trajectory-

clustering algorithm based on an index tree. Transaction of the Institute of Measurement and

Control 2012, 34(7):850-861.

[12] Aiden Nibali, Zhen He. Trajic: An effective compression system for trajectory data. IEEE

Transaction on Knowledge and Data Engineering, 2015, 27(11):3138-3151.

[13] Rajib Rana, Mingrui Yang, Tim Wark, et al. SimpleTrack: Adaptive trajectory compression

with deterministic projection matrix for mobile sensor networks. IEEE Sensors Journal, 2015,

15(1): 365-373.

[14] Kuien Liu, Yaguang Li, Jian Dai, Shuo Shang, Kai Zheng. Compressing large scale urban

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 17

trajectory data. In: Proceedings of the Fourth International Workshop on Cloud Data and Platforms

(CloudDP 2014). April 13, 2014, Amsterdam, Netherlands, 3: 1-6.

[15] Renchu Song, Weiwei Sun, Baihua Zheng, Yu Zheng. PRESS: A novel framework of

trajectory compression in road networks. Proceedings of the VLDB Endowment, 2014, 7(9): 661-

672.

[16] Georgios Kellaris, Nikos Pelekis, Yannis Theodoridis. Map-matched trajectory compression.

Journal of Systems and Software, 2013, 86(6): 1566-1579.

[17] Iulian Sandu Popa, Karine Zeitouni, Vincent Oria, et al. Spatio-temporal compression of

trajectories in road networks. GeoInformatica, 2014, 19(1): 117-145.

[18] Falko Schmid, Kai-Florian Richter, Patrick Laube. Semantic trajectory compression. In:

Proceedings of the 11the International Symposium on Spatial and Temporal Databases (SSTD

2009). July 8-10, 2009, Aalborg, Denmark, 411-416.

[19] Richter K F, Schmid F, Laube P. Semantic trajectory compression: Representing urban

movement in a nutshell. Journal of Spatial Information Science, 2015 (4): 3-30.

[20] Shenzhu Feng, Jian Xu Ming, Xu Ning Zheng, et al. EHSTC: an enhanced method for

semantic trajectory compression. In: Proceedings of the 4th ACM SIGSPATIAL International

Workshop on GeoStreaming (IWGS 2013). November 5, 2013, Orlando, Florida, USA, 43-49.

[21] Jonathan Muckell, Jeong-Hyon Hwang, Vikram Patil, et al. SQUISH: an online approach for

GPS trajectory compression. In: Proceedings of the 2nd International Conference on Computing

for Geospatial Research & Applications (COM. Geo 2011). Article number: 13, 1-8.

[22] Jonathan Muckell, Paul W, Olsen Jr., Jeong-Hyon Hwang, et al. Compression of trajectory

data: a comprehensive evaluation and new approach. GeoInformatica, 2014, 18(3): 435-460.

[23] Guangwen Liu, Masayuki Iwai, Kaoru Sezaki. A method for online trajectory simplification

by enclosed area metric. In: Proceedings of the 6th International Conference on Mobile Computing

and Ubiquitous Networking, May 23 - 24, 2012, Okinawa Japan, 40-47.

[24] Guangwen Liu, Masayuki Iwai, Kaoru Sezaki. An online method for trajectory simplification

under uncertainty of gps. IPSJ Transactions on Databases, 2013, 6(3): 40-49.

[25] Wei Pan, Chunlong Yao, Xu Li, Lan Shen. An online compression algorithm for positioning

data acquisition. Informatica, 2014, 38(4):339-346.

[26] Trajcevski G, Cao H, Scheuermanny P, et al. On-line data reduction and the quality of history

in moving objects databases[C]//Proceedings of the 5th ACM international workshop on Data

engineering for wireless and mobile access. ACM, 2006: 19-26.

IJRDO - Journal of Computer Science Engineering ISSN: 2456-1843

Volume-5 | Issue-4 | April,2019 18

