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Abstract: - Object detection often refers to a collection of generic computer vision tasks which potentially identifies 

objects from the given video inputs. As object detection combines two main tasks like image classification and object 

localisation which eventually identifies one or more objects in a specified image frame. The space in which this research 

is very popular is one where researchers continue developing new aspects in detecting objects, and in various areas 

including autonomous driving, health-care monitoring, anomaly detection etc. Traditional object detection is done using 

shallow features and handcrafted architecture which eventually doesn’t give  effective results. So, to overcome this, the 

use of advanced technology such as Deep learning comes into play as it has a wide hand in this field. Thereby this paper 

brings an effective object detection model from video frames in which initially a)Data Collection from ImageNet VID 

and CIFAR-10 video analysis b) Feature extraction using a convolutional autoencoder c) feature selection using SE-

block d) Classification using integration of Yolo-Faster-RCNN. The study shows that the proposed method outperforms 

with 95% accuracy when compared with other state-of-art models. 
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1. INTRODUCTION 

Many applications are utilizing video, for detecting pedestrians, recognizing unusual behaviour in parking lots and so 

on. Nowadays, retrieving moving objects and automating the analysis of video is more frequently used. An example of 

multimedia data is video, which combines a variety of types of data like text, picture, metadata, visual, and audio. The 

primary aim of video data analysis is to recognize and track moving objects such as people across frames. Security, 

surveillance, entertainment, medical and legal applications, as well as medical education and sports make use of Video 

Data Mining. Video data mining is based on finding and analyzing patterns in massive amounts of video data. The video 

is made up of a series of images. The video material may be divided into two categories: i) low-level feature data, such 

as colour, texture, and form and ii) high-level feature details, such as audio and video. Syntactic information like video 

material contains conspicuous objects, their spatial-temporal [2] location and their spatial-temporal connection. 

Semantic data, explain what is happening in the video, such as spatial features offered by a video frame, position 

characters moved in the screen etc. The aspects of time characterize a succession of video frames such as the actions of 

actors and the movement of objects in sequence. The first step in extracting information about the objects in a video is to 

detect moving objects in video streams. In many computer vision applications, including video surveillance and people 

annotation, this is the first step. Figure 1a. shows the overall use of emerging technology over object detection. Figure 

1b explains most of the research works that happened over the object detection areas.  

  

 
Figure 1a. Most used emerging technology for the Object detection 

 

 

 
Figure 1b. Papers published regarding object detection 
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Item detection in computer vision entails finding an object or locating an instance of interest within a collection of 

suspicious frames. Tracking is the process of locating a specific instance and detecting when it occurs within suspicious 

frames [3]. Figure 1 shows a basic block diagram for object detection and tracking. The data set is divided into two 

halves. Trajectory or route tracking is the process of determining a path or trajectory that an object follows in a number 

of frames. The resulting image is a collection of frames. The dataset consists of 80% training images and 20% testing 

images. CNN and Yolov3 algorithms are used to locate objects in an image. When the Intersection over Union (IoU) is 

greater than 0.5, a bounding box is generated over the object. Multi-Object Tracking (MOT) monitors the bounded box 

in multiple frames at the same time [4]. Bounding boxes are transmitted to neural networks as a reference for tracking. 

Figure 2 depict the general object detection block.  

 

1.1 Key Highlights  

This paper focuses on effective object detection using video frames with following objectives:  

● The paper shows an effective object detection model using an integration of Yolo and Faster-RCNN 

● Feature extraction and selection is happening through Convolution autoencoder and SE block respectively. 

● The proposed model will be evaluated with other state-of-models over certain measures. 

 

Organization of the paper: Based on the idea of object detection over video, rest of the paper is divided in following 

sections:  

• Section 2 covers the related works,  

• Section 3 focuses on methodology,  

• Section 4 describes the performance evaluation,  

• And, finally section 5 concludes the paper.  

 

2. Related Works 

Fast convolutional neural networks, such as Faster-RCNN, Faster-Faster-RCNN, and Single Shot Detector (SSD), are 

being used to detect objects based on Chandan et al. (2018) (Real-time object recognition and tracking using Deep 

Learning and OpenCV).  Deep learning combines SSDs with Mobile Nets to identify and track objects effectively. Fast-

Faster-RCNN and SSD have superior accuracy, whereas YOLO is more effective when speed is a priority over accuracy 

[5]. This technique detects objects quickly and efficiently without sacrificing performance. 

 

Traditional 2D object detection results in bounding boxes that are axis-aligned (x, y) with two dimensions (w, h), 

according to Shreyas et al. Whereas 3D bounding boxes have six degrees of freedom: 3D physical size (w, h, l), 3D 

centre (x, y, z). Autonomous driving, for example, relies on the depth information provided by 3D object detection to 

complete crucial tasks in computer vision. The depth information required for 2D object recognition and tracking 

methods is lacking. In several areas where 3D object-tracking and identification are employed, more information is 

needed to get exact findings [6]. The paper describes several methods for tracking and detecting 3D objects for a wide 

range of computer vision applications including robotics, driving, space exploration, and military use. 

 

In 2019 (A real-time object detection algorithm for video), Lu et al. proposed a real-time object detection method using 

YOLO networks. To remove the effects of background images, they used image preprocessing. To identify object faces, 

they used the Fast YOLO model. Researchers in this study improved the Yolo network through a tiny convolution 

procedure created by combining Google Inception Nets (GoogleNets) and Google Inception networks using GoogleNet 

architecture, which could reduce the number of parameters and drastically reduce the time required for object detection 

[7].   Real-time detection of objects in videos can be accomplished using this Fast YOLO method. 

 

The researchers used deep learning to identify small objects in video surveillance, using the deep learning method 

Object Detection with Binary Classifiers, a two-level deep learning method intended to recognize small objects. 

Hernandez et al. (2020) proposed applying the deep learning method Object Detection with Binary Classifiers to 

identify small objects. In the first level, candidate regions are selected from the input frame, In the second level, CNN-

classifiers are used with One-Versus-All or One-Versus-One binarizations. In this study, they determined that it is hard 

to detect weapons in video surveillance if they are handled with a hand. In experiments, the proposed methodology 

minimizes the frequency of false positives compared with the baseline multiclass detection model[8]. The proposed 

methodology created six databases: a pistol, a knife, a phone, a bill, a pocketbook, and a card. 

 

Raj et al. (2021), detected objects by dividing the video into individual frames and processing each frame individually. 

Preprocessing the image and removing the noise was the first step in obtaining the relevant shape and texture of the 

image. The next step was edge detection and ended with feature extraction. Convolutional layers include many filters, 

size of filters, pooling layer, and maximum pooling layer. The items can be identified using the activation function Re 

Lu, which means a higher-level feature-containing shape is fed into the convolution layer. A gradient descent 

optimization technique is also employed to improve accuracy. ImageNet has been used to test the system [9].  

 

3. Methodology 

A suggested architecture for object detection is shown in Figure 3, in which a video is taken as an input and a single 

frame is selected for object detection. A video frame is first broken into image frames, and then a single frame is used to 
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tect the object of interest [10]. During the first stage of processing, the images are analyzed for their characteristics. he 

structure and form of the pixels provide enough information to identify the significant elements in an image, so not 

every pixel is sent to the neural network. The edges of the picture may be recognised using the feature extraction 

procedure. Then it will be passed for dimensionality reduction where with the help of SE block those features will be 

selected and finally given to classification for required results.  

 

 
 

3.1 Data Collection 

For effective object detection, deep learning classifiers require sufficient data for training and testing. So, we took 2 

datasets (ImageNet VID and CIFAR-10)  based on video analysis where these are already been divided into image 

frames or video frames of various categories.  

 

The most commonly used dataset for video object detection is the ImageNet VID dataset, which consists of two parts: 

the training set and the validation set and consists of 3862 and 555 video samples respectively[11]. In addition to thirty 

item categories, this dataset includes a frame rate of 25 or 30 frames per second. The data set also includes a subset of 

categories found in the ImageNet DET dataset [12]. For the ILSVRC classification problem, we generated a large-scale 

dataset using the picture collection and annotation technique described in earlier sections. Table 1(a,b) shows the 

amount of training, validation, and test images across the years of the challenge. Figure 4 shows ImageNet VId instances 

from different years. 

 

Table 1a. Image Classification 

Year Train Image Validation image Test image 

ILSVRC2010 1,261,406 50,000 150,000 

ILSVRC2011 1,229,413 50,000 100,000 

ILSVRC2012-14 1,281,167 50,000 100,000 

 

Table 1b. Multiple object detection localization 

Year 

Annotate 

training 

images with 

Bbox 

Annotated 

train bboxes 

Bbox 

annotations on 

Val images 

Val bboxes 

annotated 

Bbox 

annotations 

are used to test 

photographs 

ILSVRC2011 315,525 344,233 50,000 55,388 100,000 

ILSVRC2012-14 523,966 593,173 50,000 64,058 100,000 
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Figure 4. ImageNet VID dataset instances of video frames categories 

 

CIFAR-10 contains 60000 32x32 colour photos divided into ten classes, each with 6000 images. The training portion of 

the dataset contains 50000 photos while the testing portion contains 10,000 photos. The training portion of the dataset is 

divided into five training batches, while the testing portion is divided into one. It consists of exactly 1000 photographs 

randomly chosen from each class in a test batch[13]. The remaining photographs are randomly distributed in training 

batches, with some batches having more images from each class than others. Figure 5 shows random images from 

CIFAR-10 cases grouped by class. Each training batch contains exactly 5000 images[14].  

 

 
Figure 5. Instances from the CIFAR-10 dataset where random 10 categories are shown 

 

3.2 Preprocessing  

Following the entry of a video frame, image cropping is usually the initial step. In this stage, non-interesting areas of the 

picture will be cropped off so that future processing may concentrate on the regions of interest, lowering the computing 

cost. The rest of the areas are then subjected to image preprocessing operations. Local operators [15] are the simplest of 

all preprocessing adjustments since they operate by determining how well the output pixels relate to the input pixels. Let 
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x represent the position in the picture and f(x) represent its value; a local operator in the continuous domain may be 

expressed by: 

h(x) = g(f(x))     (1) 

 

As a common local operator, multipliers and adders with constants are used [16], which operate over ranges that may be 

either scalar or vector (for example, colour images or 2D motion). 

 

g(x) = af(x) + b    (2) 

 

A linear blend operator is also available, which can cross-dissolve two video frames: a and b are terms that can be used 

to describe gain and bias parameters, respectively: 

 

𝑔(𝑥) = (1 − 𝛼)𝑓0(𝑥) + 𝛼𝑓1(𝑥)  (3) 

 

It may be thought of as an image morphing method because it ranges from 0 to 1. By taking the average of all intensity 

values in a video frame, converting it to a middle grey value, and adjusting the range until every pixel in the image is 

covered, then it can automatically determine the optimal brightness and gain control balance. In addition to seeing how 

the intensity changes over time using the individual colour channels, we can also find out the minimum, maximum, and 

average intensity value of a frame using the histogram distribution[17]. As a consequence, histogram equalisation may 

be used to identify an intensity mapping function that produces a flat histogram.  

Neighbourhood filters most commonly use linear filters with a weighted sum of the input pixels as the output pixel. 

Neighbourhood filters can be used to reduce noise, sharpen fine details, or enhance edges in images. 

 

𝑔(𝑖, 𝑗) = ∑𝑓(𝑖 − 𝑘, 𝑗 − 𝑙)ℎ(𝑘, 𝑙)  (4) 

 

The main purpose of picture sharpening is to enhance or bring out blurred features in a video frame. It is defined as h(k, 

l) where k represents the weight kernel and l represents the neighbouring data. Using k and l as the difference, f(x) can 

be computed as a first-order derivative. 

 
𝜕𝑓

𝜕𝑥
= 𝑓(𝑥 + 1) − 𝑓(𝑥)  (5) 

 

In a colour picture, each channel consists of one or more colour values. Images containing RGB colours contain three 

different colour channels (red, blue and green), while those of HSI colour models contain three colours (hue, saturation, 

and intensity) and those of CMYK colour models contain four colours (cyan, magenta, yellow, and black). In turn, 

human observers cannot understand the meaning of these colour representations because they were created specifically 

for devices. Colour transformations are thus required to represent colours from one colour space to an understandable 

one[18]. Colour transformations are most commonly used for video frame recognition tasks to create a grayscale 

representation which is used for further video processing. The brightness technique calculates the grayscale value of an 

RGB colour by multiplying it by 

 

Grey = (max (R, G, B) + max (R, G, B)) /2  (6) 

 

Averaging RGB values is simply taking the average of the values. 

 

Grey = (R + G + B) / 3     (7) 

 

As a result of all these activities, we received preprocessed photos, which will be used for feature extraction. Some 

approaches use the weighted average of multiple RGB channels to improve human perception. 

 

3.3 Feature Extraction 

A traditional AE is usually composed of fully connected layers and it takes a One - Dimensional (1D) vector as input, 

which destroys the original spatial structure of the data. This is because the convolution-based operation has high 

flexibility in processing multi-dimensional data and has a strong ability in feature extraction. A 3D-CAE with 

convolutional layers instead of fully connected layers is designed in this paper, which makes the input form of the 

network more variable[19]. HSIs are 3D tensor data containing hundreds of spectral bands, which can provide abundant 

spectral and spatial information. This design for 3D-CAE consists of three layers of fully 3D convolutional layers and 

three layers of deconvolutional layers (Figure 6), where Conv-n represents an nth convolutional layer and Deconv-n 

represents an nth deconvolutional layer, respectively. For each pixel in HSIs, a 3D block centred on the current observed 

pixel is used as the input of 3D-CAE to learn its invariant characteristics. 
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Initially, a 3D-CAE is constructed. The 3D-CAE is designed as a symmetrical structure composed of 3D convolutional 

layers and deconvolutional layers, as shown in Figure 6. The size of the feature map is gradually reduced, and the 

number of convolution kernels are gradually increased. The size of the output is same as the size of the input. Secondly, 

train and optimize the 3D-CAE network. The data is sent as the input into the 3D-CAE and encoded as a low-

dimensional representation through the encoder [20]. The decoder is responsible for recovering the original input data 

from the representation. The 3D-CAE is constantly adjusted by minimizing the error between the output (O x,y,z) and 

input (I x,y,z), as described in Equation (2). When the network can reconstruct the input data well, it is believed that the 

network has a strong ability to mine the useful information in the data. 

𝐸𝑟𝑟𝑜𝑟 =
1

𝐼1×𝐼2×𝐼3
∑𝐼1−1

𝑥=0 _𝑦 = 0^1/2 − 1𝐼3 − 1 (𝐼𝑧=0
𝑥,𝑦,𝑧

− 0𝑥,𝑦,𝑧)
2
  (8) 

 

Thirdly, multi-level features from the optimized encoder are obtained. The hierarchical structure of the encoder from the 

bottom to the top provides us with features of different levels and different scales. The filter size of max-pooling has 

been set equal to the size of the corresponding feature map to reduce the dimension of the feature and increase its 

invariance [21]. Through pooling operations, each layer can get a feature vector containing different information. The 

final features are concatenated by these feature vectors from multiple layers of the encoder to make them contain more 

information and have high scale robustness. It is worth noting the proposed multi-level features from a single network. 

When compared with training multiple networks to obtain multi-level features, the proposed method is more effective 

and saves training time. We expect to make full use of the well-trained network to obtain as much information as 

possible and then help to improve the subsequent classification accuracy. 

 

3.4 Feature Selection 

Feature mappings U ∈ R H×W×C are mapped from an input X ∈ R H0×W0×C0 to a Squeeze-and-Excite block based 

on the transformation Ftr. Ftr is a convolutional operator in the following notation, where V = [v1, v2,..., vC] denotes 

the learnt set of filter kernels, with vC referring to the c-th filter's parameters. The outputs may therefore be written as U 

= [u1, u2,..., uC], where 

𝑢𝑐 = 𝑣𝑐 ∗ 𝑋 = ∑𝐶′

𝑠=1 ? 𝑣_𝑐^𝑠 ∗ 𝑥𝑠.   (9) 

 

Here ∗ denotes convolution, vc = [v1c, v2c, . . . , vC0c], X =[x1, x2, . . . , xC0] and uc ∈ RH×W . The vs
c is a two-

dimensional spatial kernel that represents a single VC channel and its corresponding X channel. Bias terms are deleted 

to simplify the notation. As vc implicitly includes channel dependences, they are entangled with the local spatial 

correlation collected by the filters, since the output is determined by averaging all channels. In convolutional models, 

interactions occur mainly implicitly and locally (except for at the top). We believe that explicitly modelling channel 

interdependencies will improve convolutional feature learning, allowing the network to raise its sensitivity to useful 

characteristics that may be exploited by future modifications. As a result, we'd want to provide it universal access and 

tune filter responses in two stages, squeezing and excitement, before feeding them into the next transformation [22]. 

Figure 7 is a schematic depicting the construction of an SE block.  

 

 
Figure 7. SE-block for feature selection 

 

Embedding information: Analyzing the output features reveals that channel dependence does not exist. Since each of 

the learned filters has a limited reception field, the transformation output U does not incorporate contextual information 
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from outside its receptive field. To solve this problem, we propose to construct channel descriptions by compressing 

global spatial information. We accomplish this by creating channel-specific data by pooling global averages. By 

decreasing U through its spatial dimensions, we calculate the c-th element of z, so the stat z R C becomes: 

 

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻×𝑊
∑𝐻

𝑖=1 _𝑗 = 1^𝑊 𝑢𝑐(𝑖, 𝑗).  (10) 

 

Adaptive Re-calibration: After the squeeze operation, we perform another operation that prioritizes the collection of 

channel-wise dependencies to take advantage of the information gathered. The system must meet three requirements to 

accomplish this goal: First, it must be flexible (i.e. able to learn nonlinear relationships between channels); Secondly, it 

must learn relationships between multiple channels that are not mutually exclusive[23] and Thirdly, it must be fast. We 

use a simple gating system with sigmoid activation to achieve these requirements. 

 

𝑠 = 𝐹𝑒𝑥(𝑧, 𝑊) = 𝜎(𝑔(𝑧, 𝑊)) = 𝜎(𝑊2𝛿(𝑊1𝑧))  (11) 

 

where δ represents the function ReLU [63], W1 ∈ RCr ×C and W2 ∈ R C× Cr . Using dimensionality-reduction layers 

with reduction ratios r, and a ReLU layer, we form a bottleneck around the non-linearities and in the next layer, 

dimensionality will increase, returning to the channel dimensions of the transformation output U, to reduce model 

complexity and facilitate generalization. By scaling U with the activations s, the final output of the block can be 

obtained as: 

𝑥𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒 (𝑢𝑐, 𝑠𝑐) = 𝑠𝑐𝑢𝑐    (12) 

 

The excitation operator converts a collection of channel weights into the input-specific descriptor z. This aspect of SE 

blocks is that they have an input-dependent dynamical response, which is similar to a self-attentional function on 

channels that aren't limited by the local receptive field to which the convolutional filters respond. 

 

By inserting the SE block after the non-linearity following each convolution, it may be incorporated into conventional 

architectures like Faster-RCNN and Yolo. Furthermore, because of the SE block's versatility, it may be used for 

transformations other than normal convolutions directly. To demonstrate this idea, we create SENets by combining SE 

blocks into a variety of more complicated structures which will be discussed next. The building of SE blocks for 

Inception networks is first considered [24]. We may obtain a SE-Faster-RCNN-Yolo network by simply changing the 

transformation Ftr to be a whole Inception module and repeating this for each such module in the design. The non-

identity branch of the relevant module is assumed here to represent the SE block transformation Ftr. Before summation 

with the identity branch, Squeeze and Excitation both act. Table 2 shows a comparison of the feature selection approach 

with other strategies over two datasets.  

 

                               Table 2. An overall analysis of feature selection methods 

Methods Accuracy Computation time MSE Dataset 

ASSO 88 6.7 67 

ImageNet VID 

PSO 89 5.4 79 

SSO 84 7.9 82 

LASSO 

Regression 
90 5.1 66 

PCA 94 4.3 77 

SE-Block (Ours) 94 4.1 87 

ASSO 90 4.1 83 

CIFAR-10 

PSO 88 6.2 78 

SSO 84 6.9 73 

LASSO 

Regression 
85 6.1 77 

PCA 93 4.3 89 

SE-BLOCK 

(ours) 
95 4.2 92 
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Figure 8(a). Method vs Accuracy, Computation time, MSE over ImageNet VID 

 

 
Figure 8(b). Method vs Accuracy, Computation time, MSE over CIFAR 

 

3.5 Object Detection 

Once all of the features have been chosen, the data will be sent to a classification/detection stage utilizing two networks: 

Faster-RCNN and Yolo. The framework for our model is the Faster-RCNN network, which makes use of two modules: 

a deep convolutional network in the first module, which identifies regions, and a Fast R-CNN detector in the second 

module, which uses the suggested regions. A unified network is used for object detection (Fig. 9). Using RPN processes, 

the Fast R-CNN module tells the RPN module where to look. 
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Figure 9. Faster-RCNN and RPN for object detection 

 

Using a fully convolutional net [7], we simulate this process by generating a sequence of three rectangle-shaped ideas 

based on an image (of any size). This section describes our fully convolutional net. We assume that both Fast R-CNN, 

as well as Fast R-CNN, have the same set of convolutional layers because our ultimate goal in sharing computation with 

them is to recognize objects [2]. 

 

This tiny network slides over the convolutional feature map that is generated by the final shared convolutional layer. 

The input convolutional feature map is fed into an n spatial window of this network. Assigned to each sliding window 

are lower-dimensional features (256-dimensional ZF, 512-dimensional VGG, followed by ReLU [25]). The two sisters’ 

layers that feed into the feature are the box-regression layer and the box-classification layer. This study was conducted 

with n = 3 because the input image has a large effective receptive field (171 and 228 pixels). The result of this analysis 

is shown in Figure 10 at a single location. Due to the sliding-window structure of the mini-network, the fully linked 

layers are accessible at multiple locations. During this design (for reg and cls, respectively), two sibling convolutional 

layers are followed by an NN layer. 
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Figure 10. Regions proposal Network 

 

We anticipate receiving numerous area options at each sliding-window location at the same time, with the request 

specifying the maximum number of possible proposals per location. As a result, a reg layer generates 4k outputs 

encoding the positions of each box, whereas a cls layer generates 2k scores estimating the possibility of each proposal 

being an object. Based on k anchors, which are k reference boxes, a cl layer generates a score for each proposal. The 

anchor displayed at each sliding point of the window, as well as the size and aspect ratio, are shown in figure 10. By 

default, we use three scales and three aspect ratios, resulting in nine anchors. There are W Hk anchors in total for a 

convolutional feature map of size W × H (usually ~2,400). 

 

Translating invariance is a critical component of our strategy both for anchors and for methods that calculate 

suggestions relative to the anchors. Whenever an object is translated in an image, the proposal should also be translated, 

and forecasts in both locations should be done by the same function. Our technique [4,5] ensures this translation-

invariant characteristic. This will operate as a guardian to prevent overfitting on the dataset. 

 

Once the appropriate results obtained utilizing the anchor of faster-RCNN, the data was sent to Yolo V3 for even better 

detection and classification. As a result, we employed a layered YOLOv3 architecture with layer stacking to achieve 

this. The model, which was designed using the Darknet-53 architecture and trained using the ImageNet dataset, is 

capable of detecting even the tiniest details in a photograph. In a single picture, the suggested model can distinguish 80 

distinct things. A total of 53 more layers are piled on top of it for detection, giving us a total of 106 completely 

convolutional layers. [19, 20] Figure 11 depicts the planned architecture. 

 
Figure 11. Yolov3 block diagram for object detection 

 

The most notable characteristic is that it detects at three distinct scales. This network uses three separate S x S kernels to 

perform the identification. Its formula is S x S x (B x 5 + C). In each feature-map cell, there are four bounding boxes. 
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The fourth is full of attributes, and the fifth represents object confidence. The C is used to represent how many classes 

are present in the model. 

 

As a result, the kernel has a size of 1 x 1 x 255. The 82nd layer develops the initial detecting procedure. For 81 layers, 

the picture is down-sampled by 32, yielding a feature map of 13 x 13 for a 416 x 416 picture, and an image with 354 x 

354 pixels can be detected with a 13 x 13 x 225 feature map generated by the 1x1 detection kernels[26]. This second 

detection is constructed based on the 94th layer, creating a 26 x 26 x 225 detection, resulting from the 2x2 upsampling 

of layer 79. This second detection is then blended with the depth map created from layer 61. A feature map with 

dimensions of 52 x 52 x 225 pixels is created as a final step in the 106th layer, with an activation function of 1/(1 + e-x). 

At different levels, Soft-max, Re-Lu, Tan hyperbolic, and other activation functions are utilized to generate scores. 

Sigmoid: 1/(1 + 𝑒−𝑥)    (13) 

Softmax: 𝑒𝑥/(𝑠𝑢𝑚 (𝑒𝑥)) 

Re-Lu: 𝑦 = 𝑚𝑎𝑥(0, ∞) 

Tanh:[2𝑓(1 + 𝑒−2𝑥)] − 1 

 

It transforms an image into a S x S grid structure. Each grid identifies an item in the image. At the moment, the grid cell 

predicts the bounding box size for each item. Each bounding box has five items (x, y, w, h, confidence). The confidence 

score represents the likelihood that a bounding box will be associated with an item, as well as the accuracy of the 

bounding box[27]. The object’s, 'x' and 'y' coordinates are represented by the "x" and "y" axes in the input picture, and 

the object's width and height are indicated by the "w" and "h" axes, respectively. 

Confidence =Probability (object) * IoU 

 

When YOLOv3 is implemented, a cross-entropy loss function replaces the mean squared error (used in YOLOv2). This 

loss function is: 

∑𝑐=1
…  ∫

𝑥∈𝑐
 𝑙𝑜𝑔 (𝑃(𝑥 ∈ 𝑐))    (14) 

 

After YOLOv3-enhanced images are detected, bounding boxes are calculated via log(p(x€C), which describes the 

probability that the identified object is a member of class C. Due to the large number of bounding boxes that have 

emerged for one item, post-processing steps are required. NMS (Non-Maximum Suppression) can be used to solve this 

problem. The proper bounding box is returned after NMS eliminates all overlapping bounding boxes[28]. Bounding 

boxes are predicted similarly to Yolov2. As a result, for each bounding box, the network predicts four coordinates: tw, 

th, tx, ty. Figure 12 shows an illustration of the bounding box. 

 
Figure 12. Yolov3 bounding box: prior (black dots), predicted (blue), predicted bounding box 

 

       Following formula for calculating bounding box coordinates [9]: 

 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦 𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤 𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ      (15) 

 

The Mean Average Precision (MAP) [29] is calculated using the IoU calculation. The IoU approach is useful for 

figuring out whether a projected box represents a true positive, a false positive, or a false negative since it implies that 

anything could be included in the bounding box. It is widely accepted that the threshold for IoU is 0.5. If the IoU value 

is more than 0.5, we may conclude that the result is genuine positive. False positives are those that have IoUs that is less 

than 0.5. False negatives are those that have IoUs greater than 0.5 and items are misclassified. YOLO utilizes non-

maximal suppression to reject duplicate items. There are no exceptions to non-maximal suppression if there is a 

threshold for IoU between any prediction in the image. 
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4. Performance Analysis 

The proposed system (Faster-RCNN+yolov3) is developed using software specifications like PyTorch as a programming 

language which is an open-source library inside python for deep learning purposes. Hardware specifications used for 

building up this model is GTX 1050 Ti 4GB Graphics (Core i7-8750H 8th Gen/8GB RAM/1TB SSHD + 128GB SSD 

and Windows 10 OS. The proposed model is evaluated using measures like accuracy, sensitivity, specificity, recall, 

precision, F1-score, detection rate, TPR, FPR, IoU, mAP, computation time and more Utilization over models like 

RCNN, VGG16, Alexnet, Googlenet, CNN, Regular Faster-RCNN, Regular Yolov3.  

 

Table 3 depicts the overall analysis of the proposed framework with other models over measures like Accuracy, 

specificity and sensitivity. Figure 13(a,b) depict the graphical representation of various models over the proposed 

method in which the proposed method integrated network outperforms the other models due to double-layer network 

structure and tendency to accurately detect those.  

 

          Table 3. An overall analysis of models over accuracy, sensitivity and specificity 

Models Dataset Accuracy Sensitivity Specificity 

RCNN 

ImageNet VID 

81 88 85 

VGG16 83 87 86 

Alexnet 80 85 84 

Googlenet 86 91 90 

CNN 87 92 91 

Regular Faster-

RCNN 
91 97 93 

Regular Yolov3 94 96 95 

Faster-RCNN + 

Yolov3 (ours) 
96 98 97 

RCNN 

CIFAR-10 

83 87 85 

VGG16 86 90 89 

Alexnet 81 86 87 

Googlenet 88 92 93 

CNN 90 95 92 

Regular Faster-

CNN 
94 96 97 

Regular Yolov3 96 98 97 

Faster-RCNN + 

Yolov3 (Ours) 
97 99 98 

 

 
Figure 13. (a) Models vs Specificity, Sensitivity and accuracy over ImageNet VID 
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Figure 13. (b) Models vs Specificity, Sensitivity and accuracy over CIFAR-10 

 

Table 4 depict the overall analysis of various models over the proposed method under measures like precision, F1-score 

and recall. Figure 14(a,b) depict a graphical representation of various models over the proposed method in which the 

proposed integrated method really outperforms better with the high-level result due to the effect of SE-block as the 

booster feature selection and thereby increases the efficiency. 

 

   Table 4. An overall analysis of various models over recall, precision and F1-score 

Models Dataset Recall Precision F1-score 

RCNN 

ImageNet VID 

0.84 0.87 0.91 

VGG16 
0.81 0.87 0.90 

Alexnet 
0.76 0.85 0.89 

Googlenet 
0.83 0.88 0.91 

CNN 
0.89 0.94 0.96 

Regular Faster-

RCNN 0.92 0.95 0.97 

Regular Yolov3 
0.94 0.96 0.98 

Faster-RCNN + 

Yolov3 (ours) 0.97 0.98 0.95 

RCNN 

CIFAR-10 

0.85 0.89 0.92 

VGG16 
0.86 0.90 0.93 

Alexnet 
0.89 0.92 0.95 

Googlenet 
0.89 0.93 0.95 

CNN 
0.91 0.94 0.96 

Regular Faster-

CNN 0.92 0.96 0.98 

Regular Yolov3 
0.94 0.97 0.98 

Faster-RCNN + 

Yolov3 (Ours) 0.98 0.98 0.99 
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Figure 14. (a) Models vs Recall, Precision and F1-score over ImageNet VID 

 

 

Figure 14. (b) Models vs Recall, Precision and F1-score over CIFAR-10 

 

Table 5 shows the overall analysis of various models over the proposed method under measures like TPR, FPR and 

detection rate. Figure 15(a,b) depict the graphical representation of various models over the proposed method.  

  

RCNN VGG16 Alexnet Googlenet CNN
Regular
Faster-
RCNN

Regular
Yolov3

Faster-
RCNN +
Yolov3
(ours)

Recall 0.84 0.81 0.76 0.83 0.89 0.92 0.94 0.97

Precision 0.87 0.87 0.85 0.88 0.94 0.95 0.96 0.98

F1-score 0.91 0.9 0.89 0.91 0.96 0.97 0.98 0.95
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Recall 0.85 0.86 0.89 0.89 0.91 0.92 0.94 0.98
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F1-score 0.92 0.93 0.95 0.95 0.96 0.98 0.98 0.99
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      Table 5. An overall analysis of various models over TPR, FPR and detection rate 

Models Dataset TPR FPR Detection rate 

RCNN 

ImageNet VID 

0.84 0.16 0.81 

VGG16 0.81 0.19 0.75 

Alexnet 0.76 0.24 0.66 

Googlenet 0.83 0.17 0.82 

CNN 0.89 0.11 0.88 

Regular Faster-

RCNN 
0.92 0.08 0.90 

Regular Yolov3 0.94 0.06 0.91 

Faster-RCNN + 

Yolov3 (ours) 
0.97 0.03 0.95 

RCNN 

CIFAR-10 

0.85 0.15 0.83 

VGG16 0.86 0.14 0.84 

Alexnet 0.89 0.11 0.87 

Googlenet 0.89 0.11 0.87 

CNN 0.91 0.09 0.89 

Regular Faster-

CNN 
0.92 0.08 0.90 

Regular Yolov3 0.94 0.06 0.92 

Faster-RCNN + 

Yolov3 (Ours) 
0.98 0.02 0.96 

 

 
Figure 15. (a) Models vs TPR, FPR and Detection Rate over ImageNet VID 
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Figure 15. (b) Models vs TPR, FPR and Detection Rate over CIFAR-10 

 

Table 6 shows the overall analysis of various models over the proposed method under measures like IoU, mAP. Figure 

16(a,b) depict a graphical representation of various models over the proposed method.  

 

 Table 6. An overall analysis of models over IOU, mAP 

Models Dataset IOU mAP 

RCNN 

ImageNet VID 

0.4 0.85 

VGG16 0.3 0.76 

Alexnet 0.4 0.87 

Googlenet 0.5 0.92 

CNN 0.5 0.90 

Regular Faster-RCNN 0.5 0.93 

Regular Yolov3 0.5 0.96 

Faster-RCNN + Yolov3 (ours) 

0.5 0.98 

RCNN 

CIFAR-10 

0.5 0.89 

VGG16 
0.3 0.79 

Alexnet 
0.3 0.76 

Googlenet 
0.5 0.91 

CNN 
0.4 0.86 

Regular Faster-CNN 
0.5 0.93 

Regular Yolov3 
0.5 0.97 

Faster-RCNN + Yolov3 (Ours) 
0.5 0.98 

 

RCNN VGG16 Alexnet Googlenet CNN
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Faster-

CNN

Regular
Yolov3

Faster-
RCNN +
Yolov3
(Ours)

TPR 0.85 0.86 0.89 0.89 0.91 0.92 0.94 0.98

FPR 0.15 0.14 0.11 0.11 0.09 0.08 0.06 0.02

Detection Rate 0.83 0.84 0.87 0.87 0.89 0.9 0.92 0.96
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Figure 16. (a) Models vs IOU and mAP over ImageNet VID 

 

 
Figure 16. (b) Models vs IOU and mAP over CIFAR-10 

 

Figure 17 (a,b) depict a graphical representation of various models over the proposed method under measures like 

computation time and memory utilisation. The proposed method outperforms with less memory utilisation and 

comparatively less computation time. 

 

5. Conclusion 

Distinguishing objects in a web based video is intricate because of the profundity of data accessible in each edge. 

Usually a video is cut into image outlines and then the image of interest is recognized for process. Later many steps are 

followed like pictures are separated into training and testing set for test etc. This study show that the framework used in 

this paper effectively handled pictures and hence brings an effective object detection model from video frames 

integration of Yolo-Faster-RCNN. The study shows that the proposed method outperforms with 95% accuracy when 

compared with other state-of-art models. The proposed Yolo-FRCNN calculation is utilized and the outcomes are 

contrasted and different condition state-of-art models under different measures. The outcomes are extremely 

encouraging and much effective. Additionally, it would be valuable for other exploration expert to burrow profound and 

get to know all perspectives and ready to carry out even significant level models and accordingly brings much more 

viable outcomes also. 
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