

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 Software Defect Predication using Classifier Mining

K.B.S. Sastry1 , Dr. R. Satya Prasad2,
1Lecturer , Dept. of Computer Science, Andhra Loyola College,Vijayawada, sastrykbs@gmail.com

2 Associate Professor, Dept. of Computer Science, Acharya Nagarjuna

University,Guntur,profrsp@gmail.com

There has been rapid growth of software development. Due to various causes, the

software comes with many defects. In Software development process, testing of

software is the main phase which reduces the defects of the software. If a developer or a

tester can predict the software defects properly then, it reduces the cost, time and e ort.

In this paper, we show a comparative analysis of software defect prediction based on

classification rule mining. We propose a scheme for this process and we choose

different classification algorithms. Showing the comparison of predictions in software

defects analysis. This evaluation analyzes the prediction performance of competing

learning schemes for given historical data sets(NASA MDP Data Set). The result of this

scheme evaluation shows that we have to choose different classifier rule for different

data set.

Keywords: Software defect prediction, classification Algorithm, Confusion matrix

1.1 Mining for software Engineering

To improve the software productivity and quality, software engineers are applying data

mining algorithms to various SE tasks. Many algorithms can help engineers gure out

how to invoke API methods provided by a complex library or framework with

insufficient documentation. In terms of maintenance, such type of data mining

algorithms can assist in determining what code locations must be changed when another

code location is changed. Software engineers can also use data mining algorithms to

hunt for potential bugs that can cause future in-field failures as well as identify buggy

lines of code (LOC) responsible for already-known failures. The second and third

columns of Table 2.1 list several example data mining algorithms and the SE tasks to

which engineers apply them [1].

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 185

mailto:sastrykbs@gmail.com

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Proposed Scheme

2.1 Overview of the Framework

In General, before building defect prediction model and using them for prediction

purposes, we first need to decide which learning scheme or learning algorithm should be

used to construct the model. Thus, the predictive performance of the learning scheme

should be determined, especially for future data. However, this step is often neglected

and so the resultant prediction model may not be Reliable. As a consequence, we use a

software defect prediction framework that provides guidance to address these potential

shortcomings.

The framework consists of two components:

1) scheme evaluation and

2) defect prediction.

Figure 2.1 contains the details. At the scheme evaluation stage, the performances of

the different learning schemes are evaluated with historical data to determine whether a

certain learning scheme performs sufficiently well for prediction purposes or to select

the best from a set of competing schemes.

From Figure 2.1, we can see that the historical data are divided into two parts: a

training set for building learners with the given learning schemes, and a test set

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 186

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Figure 2.1: Proposed framework

for evaluating the performances of the learners. It is very important that the test data are

not used in any way to build the learners. This is a necessary condition to assess the

generalization ability of a learner that is built according to a learning scheme and to

further determine whether or not to apply the learning scheme or select one best scheme

from the given schemes.

At the defect prediction stage, according to the performance report of the rst stage, a

learning scheme is selected and used to build a prediction model and predict software

defect. From Fig. 2.1, we observe that all of the historical data are used to build the

predictor here. This is very different from the first stage; it is very useful for improving

the generalization ability of the predictor. After the predictor is built, it can be used to

predict the defect-proneness of new software components.

MGF proposed [5] a baseline experiment and reported the performance of the Naive

Bayes data miner with log- filtering as well as attribute selection, which performed the

scheme evaluation but with in appropriate data. This is because they used both the

training (which can be viewed as historical data) and test (which can be viewed as new

data) data to rank attributes, while the labels of the new data are unavailable when

choosing attributes in practice.

2.2 Scheme Evaluation

The scheme evaluation is a fundamental part of the software defect prediction

framework. At this stage, different learning schemes are evaluated by building and

evaluating learners with them. The first problem of scheme evaluation is how to divide

historical data into training and test data. As mentioned above, the test data should be

independent of the learner construction. This is a necessary precondition to evaluate the

performance of a learner for new data. Cross-validations usually used to estimate how

accurately a predictive model will perform in practice. One round of cross-validation

involves partitioning a data set into complementary subsets, performing the analysis on

one subset, and validating the analysis on the other subset. To reduce variability,

multiple rounds of cross-validation are performed using different partitions, and the

validation results are averaged over the rounds.

In our framework, an percentage split used for estimating the performance of each

predictive model, that is, each data set is first divided into 2 parts, and after that a

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 187

predictor is learned on 60% instances, and then tested on the remaining 40%. To

overcome any ordering effect and to achieve reliable statistics, each holdout experiment

is also repeated M times and in each repetition the data sets are randomized. So overall,

M*N(N=Data sets) models are built in all during the period of evaluation; thus M*N

results are obtained on each data set about the performance of the each learning scheme.

After the training-test splitting is done each round, both the training data and

learning scheme(s) are used to build a learner. A learning scheme consists of a data

preprocessing method, an attribute selection method, and a learning algorithm.

Evaluation of the proposed framework is comprised of:

1. A data preprocessor

• The training data are preprocessed, such as removing outliers, handling missing

values, and discretizing or transforming numeric attributes.

• Here Preprocessor used-

NASA Preprocessing Tool

2. An attribute selector

• Here we have considered all the attributes provided by the NASA MDP Data Set.

3. Learning Algorithms

{ NaiveBayseSimple from bayse classification

{ Logistic classi cation

{ From Rule based classification {

DecisionTable

{ OneR

{ JRip {

PART

{ From Tree based classification{ {

J48

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 188

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

{ J48Graft

}

}

}

2.3 Scheme Evaluation Algorithm

Data: Historical Data Set

Result: The mean performance values

1 M=12 :No of Data Set

2 i=1;

3 while i<=M do

4 Read Historical Data Set D[i];

5 Split Data set Instances using % split;

6 Train[i]=60% of D; % Training Data;

7 Learning(Train[i],scheme);

8 Test Data=D[i]-Train[i];% Test Data;

9 Result=TestClassifier(Test[i],Learner);

10 end

Algorithm 1: Scheme Evaluation

2.4 Defect prediction

The defect prediction part of our framework is straightforward; it consists of predictor

construction and defect prediction. During the period of the predictor construction:

1. A learning scheme is chosen according to the Performance Report.

2. A predictor is built with the selected learning scheme and the whole historical

data. While evaluating a learning scheme, a learner is built with the training data and

tested on the test data. Its final performance is the mean over all rounds. This reveals

that the evaluation indeed covers all the data. Therefore, as we use all of the historical

data to build the predictor, it is expected that the constructed predictor has stronger

generalization ability.

3. After the predictor is built, new data are preprocessed in same way as historical

data, then the constructed predictor can be used to predict software defect with

preprocessed new data.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 189

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

2.5 Difference between Our Framework and Others

So, to summarize, the main difference between our framework and that of others in

the following:

1) We choose the entire learning scheme, not just one out of the learning algorithm,

attribute selector, or data preprocessor;

2) We use the appropriate data to evaluate the performance of a scheme.

|-NASA MDP Data Set [9].

3) We choose percentage split for training data set(60%) and test dataset(40%).

2.6 Data Set

We used the data taken from the public NASA MDP repository, which was also used by

MGF and many others, e.g., [10], [11], [12], [13].Thus, there are 12 data sets in total

from NASA MDP repository.

Table 3.1, and 3.2 provides some basic summary information. Each data set is

comprised of a number of software modules (cases), each containing the corresponding

number of defects and various software static code attributes. After preprocessing,

modules that contain one or more defects were labeled as defective. A more detailed

description of code attributes or the origin of the MDP data sets can be obtained from

[5].

 Table 2.1: NASA MDP Data Sets

Data Set System Language Total Loc

CM1-5 Spacecraft Instrument C 17K

KC3-4 Storage management for ground data JAVA 8K and 25K

KC1-2 Storage management for ground data C++ *

MW1 Database C 8K

PC1,2,5 Flight Software for Earth orbiting Software C 26K

PC3,4 Flight Software for Earth orbiting Software C 30-36K

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 190

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 Table 2.2: Data Sets

 Data Set Attribute Module Defect Defect(%)

 CM1 38 344 42 1.22

 JM1 22 9593 1759 18.34

 KC1 22 2096 325 15.5

 KC3 40 200 36 18

 MC1 39 9277 68 0.73

 MC2 40 127 44 34.65

 MW1 38 264 27 10.23

 PC1 38 759 61 8.04

 PC2 37 1585 16 1.0

 PC3 38 1125 140 12.4

 PC4 38 1399 178 12.72

 PC5 39 17001 503 2.96

2.7 Performance Measurement

The Performance measured according to the Confusion matrix given in table:2.3, which

is is used by many researchers e.g [14], [5]. Table 2.3 illustrates a confusion matrix for a

two class problem having positive and negative class values.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 191

 Table 2.3: Confusion Matrix

 Predicted Class

 Positive Negative

 Actual class Positive True Positive False Negative

 Negative False Positive True negative

Software defect predictor performance of the proposed scheme based on

Accuracy, Sensitivity, Specificity, Balance, ROC Area defined as

=The percentage of prediction that is correct.

pd=True Positive Rate(tpr)=Sensitivity =
TP

TP +FN
=The percentage of positive labeled instances that predicted as positive

Specificity =
TN

FP +TN

=The percentage of positive labeled instances that predicted as negative.

• pf=False Positive Rate(fpr)=1-specificity

=The percentage of Negative labeled instances that predicted as negative

Formal definitions for pd and pf are given in the formula. Obviously, higher pds

and lower pfs are desired. The point (pd=1, pf=0) is the ideal position where we

recognize all defective modules and never make mistakes.

MGF introduced a performance measure called balance, which is used to choose the

optimal (pd, pf) pairs. The definition is shown bellow from which we can see that it is

equivalent to the normalized euclidean distance from the desired

point (0, 1) to (pf,pd) in a ROC curve.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 192

The receiver operating characteristic(ROC) [15] [28], curve is often used to evaluate

the performance of binary predictors. A typical ROC curve is shown in Fig. 2.2. The y-

axis shows probability of detection (pd) and the x-axis shows probability of false alarms

(pf).

Formal definitions for pd and pf are given above. Obviously, higher pds and lower

pfs are desired. The point (pf=0, pd=1) is the ideal position where we recognize all

defective modules and never make mistakes.

Figure 2.2: Scheme evaluation of the proposed framework

The Area Under ROC Curve (AUC) is often calculated to compare different ROC

curves. Higher AUC values indicate the classifier is, on average, more to the upper left

region of the graph. AUC represents the most informative and commonly used, thus it is

used as another performance measure in this paper.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 193

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

3. Result Discussion

This section provides simulation results of some of the Classification algorithm

techniques collected by simulation on Software tool named weka(virsion 3.6.9). In the

thesis, however, proposed schemes are more comprehensively compared with

competent schemes.

According to best accuracy value we choose 8 classification algorithm among many

classification algorithms. All the evaluated values are collected and compare with

different performance measurement parameter.

3.1 Accuracy

From the accuracy table 3.1 we can see different algorithm giving di rent accuracy on

different data set. But the average performance nearly same.

For Storage management software(KC1-3) LOG, J48G giving better Accuracy value.

For database software written in c programming language (MW1) only PART giving

better accuracy value.

The performance graph is given in the figure 3.3.

Table 3.1: Accuracy

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 83.94 87.68 89.13 86.23 89.13 73.91 86.23 86.96

JM1 81.28 82.02 81.57 81.42 79.67 81.13 79.8 79.83

KC1 83.05 86.87 84.84 84.84 83.29 83.89 85.56 85.56

KC3 77.5 71.25 75 76.25 71.25 81.25 80 82.5

MC1 94.34 99.27 99.25 99.22 99.3 99.19 99.3 99.3

MC2 66 66.67 56.86 56.86 56.86 70.59 52.94 54.9

MW1 79.25 77.36 85.85 86.79 85.85 88.68 85.85 85.85

PC1 88.82 92.11 92.43 89.14 91.45 89.8 87.83 88.49

PC2 94.29 99.05 99.37 99.21 99.37 99.37 98.9 98.9

PC3 34.38 84.67 80.22 82.89 82.89 82.67 82.22 83.56

PC4 87.14 91.79 90.18 90.36 90.18 88.21 88.21 88.93

PC5 96.56 96.93 97.01 97.28 96.9 96.93 97.13 97.16

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 194

 Sensitivity

From the accuracy table 3.2 we see that NB algorithm gives better performance in

maximum data set.

In case of DecisionTable gives the sensitivity zero(sometimes), that means it

considering all the class as a true negative. It can not be consider for defect prediction.

LOG, OneR, PART, J48, J48G algorithms giving average performance.

Table 3.2: Sensitivity

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 0.4 0.267 0 0.2 0.133 0.333 0.2 0.2

JM1 0.198 0.102 0.07 0.157 0.109 0.03 0.131 0.123

KC1 0.434 0.238 0.197 0.328 0.254 0.32 0.32 0.32

KC3 0.412 0.412 0.118 0.118 0.176 0.353 0.353 0.353

MC1 0.548 0.161 0.194 0.161 0.161 0.194 0.161 0.161

MC2 0.571 0.545 0 0 0.091 0.5 0.045 0.045

MW1 0.429 0.286 0.429 0.143 .071 0.286 0.214 0.214

PC1 0.28 0.24 0.16 0.16 0.08 0.36 0.24 0.24

PC2 0.333 0 0 0 0 0 0 0

PC3 0.986 0.178 0 0.233 0.014 0.137 0.288 0.288

PC4 0.431 0.538 0.231 0.508 0.323 0.677 0.692 0.677

PC5 0.427 0.308 0.332 0.521 0.303 0.474 0.498 0.479

3.3 Specificity

From the specificity table we can see some of the algorithm are giving 100 percent

specificity, that can not be consider as there respective sensitivity zero. These

algorithms can give wrong prediction.

So According to the sensitivity and specificity DecisionTable algorithm should not

consider for software defect prediction as they giving high 100% specificity bt 0%

sensitivity.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 195

Table 3.3: Specificity

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 0.893 0.951 1 0.943 0.984 0.789 0.943 0.951

JM1 0.956 0.988 0.99 0.968 0.957 0.994 0.954 0.956

KC1 0.898 0.976 0.959 0.937 0.932 0.927 0.947 0.947

KC3 0.873 0.794 0.921 0.937 0.857 0.937 0.921 0.952

MC1 0.947 1 0.999 0.999 1 0.999 1 1

MC2 0.724 0.759 1 1 0.931 0.862 0.897 0.931

MW1 0.848 0.848 0.924 0.978 0.978 0.978 0.957 0.957

PC1 0.943 0.982 0.993 0.957 0.989 0.946 0.935 0.943

PC2 0.946 0.997 1 0.998 1 1 0.995 0.995

PC3 0.219 0.976 0.958 0.944 0.987 0.96 0.926 0.942

PC4 0.929 0.968 0.99 0.956 0.978 0.909 0.907 0.917

PC5 0.983 0.99 0.991 0.987 0.99 0.985 0.986 0.987

3.4 Balance

looking to the Accuracy, Sensitivity and Specificity performance table we consider

the NB, LOG, JRip, OneR, PART, J48, J48G, as there performance are average.

From the graph figure 3.1 we see that, in maximum of cases the OneR algorithm

giving lowest balance value than others. So, no need to use for defect prediction.

Table 3.4: Balance

Methods NB LOG DT JRip OneR PART J48 J48G

CM1 0.569 0.481 0.293 0.433 0.387 0.505 0.433 0.433

JM1 0.432 0.365 0.342 0.403 0.369 0.314 0.385 0.379

KC1 0.593 0.461 0.431 0.523 0.47 0.516 0.518 0.518

KC3 0.575 0.559 0.374 0.375 0.409 0.54 0.539 0.541

MC1 0.678 0.407 0.43 0.407 0.407 0.43 0.407 0.407

MC2 0.639 0.636 0.293 0.293 0.355 0.633 0.321 0.323

MW1 0.582 0.484 0.593 0.394 0.343 0.495 0.443 0.443

PC1 0.489 0.462 0.406 0.405 0.349 0.546 0.461 0.461

PC2 0.527 0.293 0.293 0.293 0.293 0.293 0.293 0.293

PC3 0.448 0.419 0.292 0.456 0.303 0.389 0.494 0.495

PC4 0.595 0.673 0.456 0.651 0.521 0.763 0.772 0.764

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 196

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

PC5 0.595 0.511 0.528 0.661 0.507 0.628 0.645 0.631

Depending on Accuracy, Sensitivity, Specificity, Balance performance we choosen

6 Algorithms from 8 algorithms are{

• NaiveBayesSimple

• Logistic

• JRip

• PART

• J48 and J48Graft

Figure 3.1: Balance

3.5 ROC Area

And the Software defect prediction performance based on ROC Area simulated by our

scheme given in the table:3.5..

According to ROC Area Logistic and Navey based algorithm gives the better

performance for software defect prediction.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 197

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Table 3.5: Comparative Performance(ROC Area) of Software defect prediction.

Methods CM1 JM1 KC1 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

NB 0.685 0.681 0.801 0.745 0.861 0.745 0.666 0.736 0.846 0.793 0.84 0.804

Log 0.668 0.709 0.808 0.604 0.893 0.686 0.592 0.821 0.7 0.802 0.911 0.958

JRip 0.572 0.562 0.633 0.527 0.58 0.5 0.561 0.561 0.499 0.589 0.735 0.755

PART 0.492 0.713 0.709 0.612 0.773 0.639 0.611 0.566 0.481 0.728 0.821 0.942

J48 0.537 0.67 0.698 0.572 0.819 0.259 0.5 0.646 0.39 0.727 0.784 0.775

j48G 0.543 0.666 0.698 0.587 0.819 0.274 0.5 0.651 0.39 0.738 0.778 0.775

Figure 3.2: ROC Area

3.6 Comparison with other's results

• In 2011 Song, Jia, Ying, and Liu proposed a general framework. In that

framework they used One R algorithms for defect prediction, But that should no

be consider for defect prediction as it gives 0 sensitivity sometimes, and balance

values are very low than others.

• In 2007 MGF used considers only 10 data set, whereas in our research we used 12

data set with more modules in every data set. And in our result the balance values

are also greater than there results.

• In others works different machine learning algorithms are used. In our research

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 198

Figure 3.3: Accuracy

the results of comparative measurement values are increases. Mainly in accuracy

increases as we used percentage split.

Figure 3.4: Sensitivity

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 199

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 200

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Figure 3.5: Specificity

Figure 3.6: Balance

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 201

4. Conclusion

4.1 Concluding Remarks

In our research work we have attempted to solve the Software defect prediction problem

through different Data mining (Classification) algorithms.

In our research NB and Logistic algorithm gives the overall better performance for

defect prediction. PART and J48 gives better performance than OneR and JRip .

From these results, we see that a data preprocessor/attribute selector can play

different roles with different learning algorithms for different data sets and that no

learning scheme dominates, i.e., always outperforms the others for all data sets. This

means we should choose different learning schemes for different data sets, and

consequently, the evaluation and decision process is important.

In order to improve the efficiency and quality of software development, we can

make use of the advantage of data mining to analysis and predict large number of defect

data collected in the software development. This paper reviewed the current state of

software defect management, software defect prediction models and data mining

technology brie y. Then proposed an ideal software defect management and prediction

system, researched and analyzed several software defect prediction methods based on

data mining techniques and specific models(NB, Logistic, PART, J48G)

4.2 Scope for Further Research

 Clustering based classification can be used.

 Future studies could focus on comparing more classification methods and

improving association rule based classification methods

 Furthermore, the pruning of rules for association rule based classification

methods can be considered.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 202

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Bibliography

[1] Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu. Data mining for

software engineering. Computer, 42(8):55{62, 2009.

[2] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu. A general

software defect-proneness prediction framework. Software Engineering, IEEE

Transactions on, 37(3):356{370, 2011.

[3] Ma Baojun, Karel Dejaeger, Jan Vanthienen, and Bart Baesens. Software defect

prediction based on association rule classi cation. Available at SSRN 1785381,

2011.

[4] S Bibi, G Tsoumakas, I Stamelos, and I Vlahavas. Software defect prediction using

regression via classi cation. In IEEE International Conference on, pages 330{336,

2006.

[5] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes

to learn defect predictors. Software Engineering, IEEE Transactions on, 33(1):2{13,

2007.

[6] Iker Gondra. Applying machine learning to software fault-proneness prediction.

Journal of Systems and Software, 81(2):186{195, 2008.

[7] Atac Deniz Oral and Ayse Basar Bener. Defect prediction for embedded software.

In Computer and information sciences, 2007. iscis 2007. 22nd international

symposium on, pages 1{6. IEEE, 2007.

[8] Yuan Chen, Xiang-heng Shen, Peng Du, and Bing Ge. Research on software defect

prediction based on data mining. In Computer and Automation Engineering

(ICCAE), 2010 The 2nd International Conference on, volume 1, pages 563{567.

IEEE, 2010.

[9] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data quality:

Some comments on the nasa software defect data sets. 2013.

[10] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch.

Benchmarking classi cation models for software defect prediction: A proposed

framework and novel ndings.

Software Engineering, IEEE Transactions on, 34(4):485{496, 2008.

[11] Yue Jiang, Bojan Cukic, and Tim Menzies. Fault prediction using early lifecycle

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 203

data. In

Software Reliability, 2007. ISSRE'07. The 18th IEEE International Symposium on,

pages 237{246. IEEE, 2007.

[12] Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow. Comparing design and

code metrics for software quality prediction. In Proceedings of the 4th international

workshop on Predictor models in software engineering, pages 11{18. ACM, 2008.

[13] Hongyu Zhang, Xiuzhen Zhang, and Ming Gu. Predicting defective software

components from code complexity measures. In Dependable Computing, 2007.

PRDC 2007. 13th Paci c Rim International Symposium on, pages 93{96. IEEE,

2007.

[14] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study of

the behavior of several methods for balancing machine learning training data. ACM

SIGKDD Explorations Newsletter, 6(1):20{29, 2004.

[15] Charles E Metz, Benjamin A Herman, and Jong-Her Shen. Maximum likelihood

estimation of receiver operating characteristic (roc) curves from continuously-

distributed data. Statistics in medicine, 17(9):1033{1053, 1998.

[16] Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair. Software

defect association mining and defect correction e ort prediction. Software

Engineering, IEEE Transactions on, 32(2):69{82, 2006.

[17] Norman E. Fenton and Martin Neil. A critique of software defect prediction models.

Software Engineering, IEEE Transactions on, 25(5):675{689, 1999.

[18] Naeem Seliya and Taghi M Khoshgoftaar. Software quality estimation with limited

fault data: a semi-supervised learning perspective. Software Quality Journal,

15(3):327{344, 2007.

[19] Frank Padberg, Thomas Ragg, and Ralf Schoknecht. Using machine learning for

estimating the defect content after an inspection. Software Engineering, IEEE

Transactions on, 30(1):17{28, 2004.

[20] Venkata UB Challagulla, Farokh B Bastani, I-Ling Yen, and Raymond A Paul.

Empirical assessment of machine learning based software defect prediction

techniques. In Object-Oriented Real-Time Dependable Systems, 2005. WORDS

2005. 10th IEEE International Workshop on, pages 263{270. IEEE, 2005.

[21] Norman Fenton, Paul Krause, and Martin Neil. A probabilistic model for software

defect prediction. IEEE Trans Software Eng, 2001.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 204

[22] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of

the e ciency of change metrics and static code attributes for defect prediction. In

Software Engineering, 2008. ICSE'08. ACM/IEEE 30th International Conference

on, pages 181{190. IEEE, 2008.

[23] Ganesh J Pai and Joanne Bechta Dugan. Empirical analysis of software fault

content and fault proneness using bayesian methods. Software Engineering, IEEE

Transactions on, 33(10):675{686, 2007.

[24] Giovanni Denaro, Sandro Morasca, and Mauro Pezz . Deriving models of software

fault-proneness. In Proceedings of the 14th international conference on Software

engineering and knowledge engineering, pages 361{368. ACM, 2002.

[25] Ling-Feng Zhang and Zhao-Wei Shang. Classifying feature description for software

defect prediction. In Wavelet Analysis and Pattern Recognition (ICWAPR), 2011

International Conference on, pages 138{143. IEEE, 2011.

[26] Mark Hall, Eibe Frank, Geo rey Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H Witten. The weka data mining software: an update. ACM SIGKDD

Explorations Newsletter, 11(1):10{18, 2009.

[27] DMW Powers. Evaluation: From precision, recall and f-measure to roc.,

informedness, markedness & correlation. Journal of Machine Learning

Technologies, 2(1):37{63, 2011.

[28] Mark H Zweig and Gregory Campbell. Receiver-operating characteristic (roc)

plots: a fundamental evaluation tool in clinical medicine. Clinical chemistry,

39(4):561{577, 1993.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-32 205

