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Abstract: Cache Only Memory Access (COMA) multiprocessors support scalable coherent 

shared memory with a uniform memory access programming model. The cache-based 

organization of memory results in long memory access latencies [2].Latency hiding 

mechanisms can reduce effective memory latency by making data present in a processor’s 

local memory by the time the data is needed. In this paper, we study the effectiveness of 

latency hiding mechanisms on the KSR2 multiprocessor in improving the performance of three 

programs. The communication patterns of each program are analyzed and mechanisms for 

latency hiding are applied. DICE is a shared-bus multiprocessor based on a distributed shared-

memory architecture, known as cache-only memory architecture(COMA). [3]Unlike previous 

COMA proposals for large-scale multiprocessing, DICE utilizes COMA to effectively decrease 

the speed gap between modem high-performance microprocessors and the bus. DICE tries to 

optimize COMA for a shared-bus medium, in particular to reduce detrimental effects of the 

cache coherence and the ‘last memory block’ problem on replacement. In this paper, we 

present a global bus design of DICE based on the IEEE future bus 1 backplane bus and the Texas 

Instruments chip-set.[5]  
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Cache only memory architecture (COMA) is a computer memory organization for use in 

multiprocessors in which the local memories (typically DRAM) at each node are used as cache. 

This is in contrast to using the local memories as actual main memory, as in Non Uniform 

Memory Access(NUMA) organizations. In NUMA, each address in the global address space is 

typically assigned a fixed home node. When processors access some data, a copy is made in 

their local cache, but space remains allocated in the home node. Instead, with COMA, there 

is no home. An access from a remote node may cause that data to migrate. Compared to 

NUMA, this reduces the number of redundant copies and may allow more efficient use of the 

memory resources. On the other hand, it raises problems of how to find a particular data 

(there is no longer a home node) and what to do if a local memory fills up (migrating some 

data into the local memory then needs to evict some other data, which doesn't have a home 

to go to). Hardware memory coherence mechanisms are typically used to implement the 

migration. Shared-bus symmetric multiprocessors (SMPs) have been widely used as a 

computing vehicle for small-scale multiprocessing [1, 2]. As microprocessors become faster 

and demand more bandwidth, however, the already limited scalability of the bus decreases 

further, and the ill-effect of a cache miss penalty becomes worse. Even with clustering of 

several processors per processor board, the effective machine size for shared-bus 

multiprocessors is fairly limited. Moreover, a cache miss can cost up to a few hundred 

processor cycles for recent high-performance microprocessors. To bridge the speed gap 

between high performance microprocessors and a backplane bus, it is important to reduce 

global bus traffic by increasing local memory utilization, together with efforts to develop a 

high-speed wide data-path backplane bus. The DICE (direct interconnection of computing 

elements) project at the University of Minnesota utilizes cache-only memory architecture 

(COMA) to bridge the gap. COMA improves the utilization of local memory by decoupling the 

address of a datum from its physical location, allowing the data to migrate and replicate 

dynamically beyond the level provided by traditional caches. This decoupling is achieved by 

treating the memory local to each node, called attraction memory (AM), as a cache to the 

shared address space without providing traditional physical main memory [3].  
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2. BUS-BASED COMA ARCHITECTURE:  

Shared-bus SMPs (Symmetric Multi-Processors) such as the Sequent Symmetry [14] or the SGI 

Challenge [3] represent the mainstream of accepted and commercially viable computer 

systems. However, as microprocessors become faster and demand more bandwidth, the 

already limited scalability of the shared bus decreases even further, and the ill-effect of a 

cache miss penalty becomes even worse. Even with clustering of having several processors 

per a processor board, the effective machine size for shared-bus multiprocessors is fairly 

limited. Further, a cache miss can cost up to a few hundred processor cycles for recent high 

performance microprocessors. To bridge the gap between high-performance microprocessors 

and a backplane bus, it is important to reduce global bus traffic and to increase local memory 

utilization, together with efforts to develop a high-speed wide datapath backplane bus. The 

DICE (Direct Interconnection of Computing Elements) project at the University of Minnesota 

utilizes the Cache-Only Memory Architecture (COMA) to bridge the gap. The COMA improves 

the utilization of local memory by decoupling the address of a datum from its physical 

location, allowing the data to move dynamically beyond the level provided by traditional 

caches. This decoupling is achieved by treating the memory local to each node, called 

attraction memory (AM), as a cache to the shared address space without providing traditional 

physical main memory [5].Unlike the previous examples of scalable COMA machines, 

including the DDM of the Swedish Institute of Computer Science [5] and the KSR-1 of the 

Kendall Square Research [23], DICE focuses on the efficient realization of the COMA as a 

shared-bus SMP with little provision for scalability for larger-scale multiprocessing. While we 

expect many problems associated with scalable COMA machines to become less serious with 

a shared-bus medium, shared bus multiprocessors benefit from the COMA in three ways: (i) 

less bus contention due to lower global traffic; (ii) shorter average memory latency due to 

higher local memory utilization; and (iii) more processors in the machine due to less 

bandwidth requirement on the bus. This paper presents a global bus design of DICE.  
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Figs. 3 shows the bus utilization and traffic rate per reference for the studied architectures, 

respectively. For the nine programs from the Perfect Club Benchmark [18], our simulation 

results show that DICE can reduce bus traffic significantly. DICE, though, generated slightly 

more traffic for replacement and coherence for some programs. A recent study on a busbased 

COMA multiprocessor reports a similarly significant reduction in bus traffic [19]: a traffic 

reduction of up to 70%, with an average of 46%, for the six SPLASH benchmark programs.  

  
REPLACEMENT AND COHERENCE:  

In this section, we outline the coherence and replacement protocol for the DICE 

multiprocessor. More details of our coherence and replacement protocol are found in [13]. 

We discuss major aspects of the protocol, which is different from the one for traditional SMPs. 

Figure 5 shows the four-state write-invalidate coherence protocol for DICE. An AM block can 

be in any one of the four states: Invalid (INV), Shared Non-owner (SHN), Shared Owner (SHO), 
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and Exclusive (EXL). The SHN state is a non-owner state and guarantees that the block in this 

state is not the only copy in the system. The SHO state is an owner state and carries an 

ambiguity – there may or may not be other copies. The EXL state guarantees that the block is 

the only copy in the system, and ownership is implicit. The SHO and EXL states indicate the 

responsibility of supplying data when a read or write request for the block is seen on the bus. 

Ownership removes the ambiguity in responding to bus transactions (e.g., on an AM miss) 

and reduces the traffic related to memory block replacement, which poses a unique problem 

in COMA multiprocessors. A falling-off block due to replacement, if it has ownership, needs 

to transfer its ownership to a shared copy if any, or relocate to a remote node if it is the “last 

copy” of the memory block. Although the cache-like local memory can be backed up by system 

disk(s) on replacement, its tremendous overhead prohibits such operations.  

  
A GLOBAL BUS DESIGN:  

We present in this section a global bus design for DICE based on our previous discussions. A 

complete description of this section can be found in [17] and [18]. Our design uses the IEEE 

Future bus+ standard bus. The implementation presented here is one of many possible 

implementations. Although the design described in [17, 18] uses a write-update policy, our 

discussion is limited to the one with a write-invalidate policy.  
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4.1 FB+ background  

We chose the Future bus+ (FB+) [22] for our global bus implementation. In the discussions 

which follow, the implementation uses the B-profile specification detailed in IEEE 896.2 for a 

couple of reasons. The profile B supports a distributed arbitration protocol, which is desirable 

not only to remove the poor system scaling associated with a central arbitration but also for 

the replacement and relocation algorithm. Moreover, several companies including Mupac, 

Schroff, and Texas Instruments (TI) [21], offer profile B compliant chipsets, backplanes, and 

Eurocard enclosures. This greatly simplifies the bus interface design by providing a proven 

implementation of the profile. Table 1 shows the transaction mapping between those 

proposed to support the DICE multiprocessor and those provided by the FB+. To enhance the 

capabilities of the basic bus transactions, the IEEE 896.1 specification provides eight user-

defined signal lines, TAG[7:0]. In addition, two modes of data transfer are provided on the 

bus, namely packet mode and compelled mode. The first allows up to a 64-contiguous-byte 

transfer using only the address of the first word. The compelled mode on the other hand 

requires a handshake for each data transfer. The Read/Write Unlocked transactions may be 

used in the packet or compelled mode for any transactions which are 8, 16, 32, or 64 bytes in 

length. The Read/Write Partial transactions are to transfer 7 bytes or less and are restricted 

to the compelled mode. The FB+ is basically comprised of two individual global buses. The 

AD[63:0] bus is a multiplexed address/data 64-bit path that is responsible for all address and 

data transfers. The second bus is the arbitration bus. Arbitration messages are interrupts and 

general system information that can be transferred throughout the system in parallel with 

data bus activity. In addition, this bus can provide arbitration for a bus master-elect while 
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another bus device is the current bus master. This provides the ability to hide some of the   

latency associated with a distributed arbitration protocol for gaining global bus access. Basic 

read or write transactions are conducted in three separate phases. The first phase is called 

connection phase and is initiated by the bus master. During this phase the master drives the 

AD[63:0] bus with the address to read from or write to. In addition, signal lines are driven to 

indicate the phase of the transaction, the transaction type and the style of transfer, packet or 

compelled. In data phase, which is the second phase, data is transferred via packet or 

compelled mode over the AD[63:0] bus. The last phase in the transaction is disconnection 

phase and is used to terminate the FB+ transaction. The master can issue another transaction 

(bus park), or release the bus tenure to the master-elect waiting to carry out a transaction.  

Arbitration in FB+ can be initiated any time, regardless of the state of an ongoing bus 

transaction. The only dependence on the address bus is AS* (Address Sync) which indicates 

to the system that the bus master is terminating its tenure and the bus will be available. 

Depending on bus traffic, the arbitration latency can be completely hidden.  

We use the TI chip-set [21] for our design, which is comprised of three chips, the TFB2010 

arbiter, the SN54-FB/SN74FB 2032 competition transceiver, and the SN54FB/SN74FB 2040 

TTL-BTL transceiver. The TFB2010 design greatly simplifies the task of system.  

4.2. RD 2 M, 2 U and 2 I: read request  

The RD (Read request) transaction is made up of three distinct modes of operation. Two of 

the modes, 2 M (miss) and 2 I (invalidate), support the DICE architecture while the 2 U 

(uncached) mode helps to maintain 896.2 profile B compliance, which is necessary to 

incorporate ‘third 2 vendor’ I/O boards.  

4.2.1. RD 2 M  

When a read request issued by a processor misses in the local memory, an RD 2 M transaction 

will be issued on the global bus. The transaction will always operate on a complete memory 

block and use the packet mode.  

4.2.2. RD 2 U  

The RD 2 U is a read transaction that will not be cached by the recipient of the data. In 

addition, the slave node supplying data will not alter the coherence state in the local memory. 
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An un cacheable read transaction helps to meet two of the implementation goals for the DICE 

project: architecture support and specification adherence. By providing an un cached 

transaction, a node can conduct transactions to I/O devices and other resources that are not 

included in the cacheable shared memory space of the system. Also, RD 2 U provides direct 

support for memory references signaled as non 2 cacheable by the CPU. The second goal of 

adhering to a specification will allow the design to take advantage of industry standard system 

support devices such as DMA, bus bridges, and networking support.  

4.2.3. RD 2 I  

RD 2 I is one of the transactions unique to a bus 2 based COMA multiprocessor. In traditional 

systems, memory recovery and page write 2 backs to disk are an ongoing process. With 

respect to main memory storage, these actions are governed solely by the operating system. 

In the DICE multiprocessor, main memory is not only distributed but also of a cache structure. 

Consequently, simply altering a page table entry and writing back a ‘copy’ of a page to disk is 

insufficient to provide data integrity and coherence. For example, if a page is written back to 

disk and copies are left in the local memories of processing nodes, regardless of what occurs 

in the L1 and L2 caches, when the page frame is re 2 allocated by the operating system there 

will be two different sets of data available.  

When the RD 2 I transaction is used to write a page cached by any recipient of the data. Similar 

to RD 2 U, WR 2 U can transfer a byte, word, double word, or even multiple blocks of data 

using the compelled or packet mode of data transfer.  
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4.4.1 Relocation mechanism  

  
Figure 8 conceptually demonstrates how this replacement and relocation is handled in a 

processor node. On a reference miss, the node decides whether relocation is necessary (1a). 

It sends a data request on the bus while fetching the replaced data from the local memory 

(2a). It puts the fetched data into the relocation buffer along with the state (3a). Upon the 

arrival of missing data, it begins the relocate transaction, and the processor now can resume 

its execution(4a). From the viewpoint of a remote node, when a relocate transaction is seen 

on the bus, the node buffers the data with its address and state (1r). The node looks up the 

AM state and tag memory to decide its priority in accepting the block it has just received (2r). 

Based on the result of the state and tag look-up, it generates and sends to the arbiter a priority 

vector, which is the 2-bit priority concatenated with its node ID (3r). In case of a tie in the 2-

bit priority, the node ID, the lower bits in the vector, will help decide the winner. After 

arbitration, the result will be passed back to the controller, which will either update the AM 

and the tag, or discard the buffered data (4r). The distributed arbitration determines the 

unique winner which will accommodate the block, and all other nodes will discard the block, 

thereby achieving our goal.  

4.4.2 REP -C  

The REP -C transaction is always performed on non-page fault generated replacements. It is 

responsible for obtaining a copy of the block that contains the reference missed in the local 

memory. Although the -C transaction is an unlocked block read as RD -M, following every REP 
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-C, without loss of tenure, is an REP -R transaction. REP -C is very similar to the transfer 

mechanism of the RD -M transaction. A global request is issued and the node with ownership 

responds by supplying the data. In addition to the data requested, the mastering node also 

takes over the ownership attribute for the block. This is done to ensure that a location will 

exist for the relocation transaction following the REP -C. A more complete description and an 

example of the ownership transfer (and ownership relinquish) is given in [13].  

4.4.3 REP -R  

When REP -C completes the CPU request can be satisfied and allowed to execute the next 

instruction. However, the issue of relocating the block which initially occupied the local 

memory, causing the collision, still remains. The REP -R transaction utilizes the arbitration 

protocol of the FB+ previously described to accomplish relocation. Without loss of the bus 

tenure, the REP -R transaction is initiated immediately after a REP -C completes. The 

transaction is completely controlled by the GBTC (Global Bus Transaction Controller, in Figure 

2) and does not involve the LBTC. This allows the LBTC (Local Bus Transaction Controller) to 

service the CPU for accesses to the local memory. The GBTC controls the HOST bus and places 

a block transfer write request to the address of the block needed to be relocated. The global 

bus interface views this as a packet mode transfer of the number of bytes equal to a block 

size. Each remote node will search their local memory tags as in previous transactions, 

however, the response of each node depends on the state of all the blocks in the set to which 

the address maps. In addition, remote nodes do not simply handshake with the FB+ 

communication protocol but participate in an arbitration for the block being relocated. Once 

nodes have determined their priorities using the scheme outlined in Section 3, each arbitrates 

using the FB+ arbitration protocol. The arbitration priority of the relocation algorithm is such 

that master-elect pre emption will take place and that only nodes participating in the 

arbitration have the opportunity to win. When the arbitration completes, the winner will be 

the node which takes the block being relocated. The priority of the node winning the 

arbitration determines what state the block will be placed in. If an INV block or an SHN block 

not of the same address wins, then the block can be placed in local memory in the EXL state. 

As in the WR -H transaction, TAG[0] is used to remove the ambiguity of relocation. When a 
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SHN state node of the same address  wins the arbitration, TAG[0] is used to determine if the 

state should be EXL or SHO.  

4.4.4 REP -Rp  

In a bus-based COMA multiprocessor, page faults must be managed differently from 

conventional SMPs. The primary reason is that the local memories of the system are caches 

to the entire shared address space. Local memories are n way set-associative and therefore 

have n locations per node where a page may be located. Also, a page fault in a traditional 

system generally has no need to alter the location of data already in the system unless 

memory is full. However, a page fault in a COMA system can result in a significant 

redistribution of data due to a collision with the incoming page. This can occur if the incoming 

page maps to a location in local memory which is occupied by block(s) of data in the EXL or 

SHO state. When a page fault occurs in DICE, a page frame of memory must be guaranteed to 

exist which maps to the incoming page. With sufficient unallocated memory, there exists such 

a page frame [8]. However, guaranteeing available space somewhere in the system does not 

guarantee available space in a specific node, nor does it guarantee that the available space is 

contiguous. Since the concept of locality suggests that it would be highly beneficial if the node 

originating the page fault should also be the recipient of the incoming page [15], clearing 

specific locations for the incoming page may become necessary. Clearing a page of data in the 

local memory may only require reserving space if no EXL or SHO attributes currently exist. In 

the case where all the blocks are not in the INV or SHN state, a relocation transaction becomes 

necessary for each of those blocks. When a page fault occurs, the GBTC on the node will begin 

processing contiguous range of memory associated with the page. The GBTC will go through 

each block address in the page range and mark INV and SHN copies with the Occupied tag 

status. Blocks in the EXL or SHO state must be relocated as described in Section 4.4.3 with the 

exception of the relocation buffer, it is not necessary in this case since there is currently not 

a collision. Once an EXL or SHO block has been relocated the block frame is marked with the 

Occupied state. When the last block address in the page range reached, the page fault support 

by the GBTC is complete. Note that blocks coming in from disk and block relocation due to the 

REP - Rp can be intermixed because of the priority assigned to the REP - Rp transaction and 
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the lower priority of the DMA device when performing the WR -U transaction to move the 

page into memory. This is fully supported by the FB+ arbitration protocol and the round robin 

fairness mechanism.  

4.5 Synchronization, I/O transactions, and interrupt support  

The TAS transaction is defined (in Table 1) as a read block followed by a write partial to 

implement synchronization instructions such as test 2 and-set. The memory location being 

accessed must remain under the control of a single processor for the duration of the 

readmodify-write cycle. In order to implement this on the TI chip-set, two transactions are 

required. However, the chip-set provides a means of securing the bus for the duration of both 

the transactions. A LOCKED* signal input on the HOST bus side of the mastering chipset can 

be asserted to ensure that no transfer of tenure occurs between transactions. In addition, 

remote nodes participating in a locked transaction must also be informed so that local access 

to the memory between the initial read and subsequent write is not allowed. The TAG[7:0] 

signal lines are set to inform local nodes that the current transaction is atomic with respect 

to global memory and a locked transaction on the global bus. The 2 U transactions are used 

in I/O operations as mentioned. However, I/O transactions which involve DMA operations 

must be treated differently. DMA operations may need to occupy a specific level of priority in 

the hierarchy of bus transactions in order to ensure that disk access and other DMA transfers 

are allowed adequate bus access. As discussed in Section 4.1, there are many levels of priority 

available for bus arbitration. Any one of these priorities can be assigned to any bus 

transaction, and the priorities of specific transactions do not affect the mechanics of the 

communication protocol. The FB 1 specification and the TI chipset support various ways to 

support the system interrupts. General messages can be sent via the bus using the standard 

unlocked transactions. Interrupts can also be implemented using the arbitration message and 

32 dedicated messages. These methods can be combined or used separately to implement 

global interrupts and interrupts targeted for a specific node.  

5 SUMMARY  

Although the shared-bus SMP is a widely accepted architecture, its scalability is severely 

limited due to limited bandwidth the bus can provide. We presented a global bus design for 
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DICE, a shared-bus COMA multiprocessor. The main contribution of this paper is in 

demonstrating the feasibility of an efficient implementation of a bus-based COMA 

multiprocessor. As microprocessors become faster and demand more bandwidth, the shared 

bus becomes an even more serious bottleneck in such systems. Handling the problem of the 

shared-bus bottleneck can be done in three complementary approaches. Firstly, a faster and 

wider bus needs to be developed. Secondly, smart bus protocols such as more aggressive 

pipelining are needed. Thirdly, memory requests should be serviced locally (or local memory 

utilization should be high). With dynamic replication and migration of data through the AMs, 

a COMA machine is expected to provide higher utilization of local memory than is otherwise 

possible, which can result in low average memory access latency and low network traffic. As 

the processor technology is progressing much faster than the bus technology, this potential 

reduction in latency and bandwidth requirement can be a crucial advantage. Considering the 

benefits of COMA and the moderate design complexity it adds to the conventional shared-

bus multiprocessor design, a bus-based COMA multiprocessor such as DICE can become a 

viable candidate for the future shared-bus multiprocessor architecture.  
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