

-

BUS-BASED SHARED-MEMORY MULTIPROCESSOR

Vishnu Shankar

Abstract: Cache Only Memory Access (COMA) multiprocessors support scalable coherent

shared memory with a uniform memory access programming model. The cache-based

organization of memory results in long memory access latencies [2].Latency hiding

mechanisms can reduce effective memory latency by making data present in a processor’s

local memory by the time the data is needed. In this paper, we study the effectiveness of

latency hiding mechanisms on the KSR2 multiprocessor in improving the performance of three

programs. The communication patterns of each program are analyzed and mechanisms for

latency hiding are applied. DICE is a shared-bus multiprocessor based on a distributed shared-

memory architecture, known as cache-only memory architecture(COMA). [3]Unlike previous

COMA proposals for large-scale multiprocessing, DICE utilizes COMA to effectively decrease

the speed gap between modem high-performance microprocessors and the bus. DICE tries to

optimize COMA for a shared-bus medium, in particular to reduce detrimental effects of the

cache coherence and the ‘last memory block’ problem on replacement. In this paper, we

present a global bus design of DICE based on the IEEE future bus 1 backplane bus and the Texas

Instruments chip-set.[5]

*Student, CSE, Dronachraya College of Engineering, Gurgaon

1 INTRODUCTION:

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 12

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Cache only memory architecture (COMA) is a computer memory organization for use in

multiprocessors in which the local memories (typically DRAM) at each node are used as cache.

This is in contrast to using the local memories as actual main memory, as in Non Uniform

Memory Access(NUMA) organizations. In NUMA, each address in the global address space is

typically assigned a fixed home node. When processors access some data, a copy is made in

their local cache, but space remains allocated in the home node. Instead, with COMA, there

is no home. An access from a remote node may cause that data to migrate. Compared to

NUMA, this reduces the number of redundant copies and may allow more efficient use of the

memory resources. On the other hand, it raises problems of how to find a particular data

(there is no longer a home node) and what to do if a local memory fills up (migrating some

data into the local memory then needs to evict some other data, which doesn't have a home

to go to). Hardware memory coherence mechanisms are typically used to implement the

migration. Shared-bus symmetric multiprocessors (SMPs) have been widely used as a

computing vehicle for small-scale multiprocessing [1, 2]. As microprocessors become faster

and demand more bandwidth, however, the already limited scalability of the bus decreases

further, and the ill-effect of a cache miss penalty becomes worse. Even with clustering of

several processors per processor board, the effective machine size for shared-bus

multiprocessors is fairly limited. Moreover, a cache miss can cost up to a few hundred

processor cycles for recent high-performance microprocessors. To bridge the speed gap

between high performance microprocessors and a backplane bus, it is important to reduce

global bus traffic by increasing local memory utilization, together with efforts to develop a

high-speed wide data-path backplane bus. The DICE (direct interconnection of computing

elements) project at the University of Minnesota utilizes cache-only memory architecture

(COMA) to bridge the gap. COMA improves the utilization of local memory by decoupling the

address of a datum from its physical location, allowing the data to migrate and replicate

dynamically beyond the level provided by traditional caches. This decoupling is achieved by

treating the memory local to each node, called attraction memory (AM), as a cache to the

shared address space without providing traditional physical main memory [3].

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 13

2. BUS-BASED COMA ARCHITECTURE:

Shared-bus SMPs (Symmetric Multi-Processors) such as the Sequent Symmetry [14] or the SGI

Challenge [3] represent the mainstream of accepted and commercially viable computer

systems. However, as microprocessors become faster and demand more bandwidth, the

already limited scalability of the shared bus decreases even further, and the ill-effect of a

cache miss penalty becomes even worse. Even with clustering of having several processors

per a processor board, the effective machine size for shared-bus multiprocessors is fairly

limited. Further, a cache miss can cost up to a few hundred processor cycles for recent high

performance microprocessors. To bridge the gap between high-performance microprocessors

and a backplane bus, it is important to reduce global bus traffic and to increase local memory

utilization, together with efforts to develop a high-speed wide datapath backplane bus. The

DICE (Direct Interconnection of Computing Elements) project at the University of Minnesota

utilizes the Cache-Only Memory Architecture (COMA) to bridge the gap. The COMA improves

the utilization of local memory by decoupling the address of a datum from its physical

location, allowing the data to move dynamically beyond the level provided by traditional

caches. This decoupling is achieved by treating the memory local to each node, called

attraction memory (AM), as a cache to the shared address space without providing traditional

physical main memory [5].Unlike the previous examples of scalable COMA machines,

including the DDM of the Swedish Institute of Computer Science [5] and the KSR-1 of the

Kendall Square Research [23], DICE focuses on the efficient realization of the COMA as a

shared-bus SMP with little provision for scalability for larger-scale multiprocessing. While we

expect many problems associated with scalable COMA machines to become less serious with

a shared-bus medium, shared bus multiprocessors benefit from the COMA in three ways: (i)

less bus contention due to lower global traffic; (ii) shorter average memory latency due to

higher local memory utilization; and (iii) more processors in the machine due to less

bandwidth requirement on the bus. This paper presents a global bus design of DICE.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 14

Figs. 3 shows the bus utilization and traffic rate per reference for the studied architectures,

respectively. For the nine programs from the Perfect Club Benchmark [18], our simulation

results show that DICE can reduce bus traffic significantly. DICE, though, generated slightly

more traffic for replacement and coherence for some programs. A recent study on a busbased

COMA multiprocessor reports a similarly significant reduction in bus traffic [19]: a traffic

reduction of up to 70%, with an average of 46%, for the six SPLASH benchmark programs.

REPLACEMENT AND COHERENCE:

In this section, we outline the coherence and replacement protocol for the DICE

multiprocessor. More details of our coherence and replacement protocol are found in [13].

We discuss major aspects of the protocol, which is different from the one for traditional SMPs.

Figure 5 shows the four-state write-invalidate coherence protocol for DICE. An AM block can

be in any one of the four states: Invalid (INV), Shared Non-owner (SHN), Shared Owner (SHO),

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 15

and Exclusive (EXL). The SHN state is a non-owner state and guarantees that the block in this

state is not the only copy in the system. The SHO state is an owner state and carries an

ambiguity – there may or may not be other copies. The EXL state guarantees that the block is

the only copy in the system, and ownership is implicit. The SHO and EXL states indicate the

responsibility of supplying data when a read or write request for the block is seen on the bus.

Ownership removes the ambiguity in responding to bus transactions (e.g., on an AM miss)

and reduces the traffic related to memory block replacement, which poses a unique problem

in COMA multiprocessors. A falling-off block due to replacement, if it has ownership, needs

to transfer its ownership to a shared copy if any, or relocate to a remote node if it is the “last

copy” of the memory block. Although the cache-like local memory can be backed up by system

disk(s) on replacement, its tremendous overhead prohibits such operations.

A GLOBAL BUS DESIGN:

We present in this section a global bus design for DICE based on our previous discussions. A

complete description of this section can be found in [17] and [18]. Our design uses the IEEE

Future bus+ standard bus. The implementation presented here is one of many possible

implementations. Although the design described in [17, 18] uses a write-update policy, our

discussion is limited to the one with a write-invalidate policy.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 16

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

4.1 FB+ background

We chose the Future bus+ (FB+) [22] for our global bus implementation. In the discussions

which follow, the implementation uses the B-profile specification detailed in IEEE 896.2 for a

couple of reasons. The profile B supports a distributed arbitration protocol, which is desirable

not only to remove the poor system scaling associated with a central arbitration but also for

the replacement and relocation algorithm. Moreover, several companies including Mupac,

Schroff, and Texas Instruments (TI) [21], offer profile B compliant chipsets, backplanes, and

Eurocard enclosures. This greatly simplifies the bus interface design by providing a proven

implementation of the profile. Table 1 shows the transaction mapping between those

proposed to support the DICE multiprocessor and those provided by the FB+. To enhance the

capabilities of the basic bus transactions, the IEEE 896.1 specification provides eight user-

defined signal lines, TAG[7:0]. In addition, two modes of data transfer are provided on the

bus, namely packet mode and compelled mode. The first allows up to a 64-contiguous-byte

transfer using only the address of the first word. The compelled mode on the other hand

requires a handshake for each data transfer. The Read/Write Unlocked transactions may be

used in the packet or compelled mode for any transactions which are 8, 16, 32, or 64 bytes in

length. The Read/Write Partial transactions are to transfer 7 bytes or less and are restricted

to the compelled mode. The FB+ is basically comprised of two individual global buses. The

AD[63:0] bus is a multiplexed address/data 64-bit path that is responsible for all address and

data transfers. The second bus is the arbitration bus. Arbitration messages are interrupts and

general system information that can be transferred throughout the system in parallel with

data bus activity. In addition, this bus can provide arbitration for a bus master-elect while

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 17

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

another bus device is the current bus master. This provides the ability to hide some of the

latency associated with a distributed arbitration protocol for gaining global bus access. Basic

read or write transactions are conducted in three separate phases. The first phase is called

connection phase and is initiated by the bus master. During this phase the master drives the

AD[63:0] bus with the address to read from or write to. In addition, signal lines are driven to

indicate the phase of the transaction, the transaction type and the style of transfer, packet or

compelled. In data phase, which is the second phase, data is transferred via packet or

compelled mode over the AD[63:0] bus. The last phase in the transaction is disconnection

phase and is used to terminate the FB+ transaction. The master can issue another transaction

(bus park), or release the bus tenure to the master-elect waiting to carry out a transaction.

Arbitration in FB+ can be initiated any time, regardless of the state of an ongoing bus

transaction. The only dependence on the address bus is AS* (Address Sync) which indicates

to the system that the bus master is terminating its tenure and the bus will be available.

Depending on bus traffic, the arbitration latency can be completely hidden.

We use the TI chip-set [21] for our design, which is comprised of three chips, the TFB2010

arbiter, the SN54-FB/SN74FB 2032 competition transceiver, and the SN54FB/SN74FB 2040

TTL-BTL transceiver. The TFB2010 design greatly simplifies the task of system.

4.2. RD 2 M, 2 U and 2 I: read request

The RD (Read request) transaction is made up of three distinct modes of operation. Two of

the modes, 2 M (miss) and 2 I (invalidate), support the DICE architecture while the 2 U

(uncached) mode helps to maintain 896.2 profile B compliance, which is necessary to

incorporate ‘third 2 vendor’ I/O boards.

4.2.1. RD 2 M

When a read request issued by a processor misses in the local memory, an RD 2 M transaction

will be issued on the global bus. The transaction will always operate on a complete memory

block and use the packet mode.

4.2.2. RD 2 U

The RD 2 U is a read transaction that will not be cached by the recipient of the data. In

addition, the slave node supplying data will not alter the coherence state in the local memory.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 18

An un cacheable read transaction helps to meet two of the implementation goals for the DICE

project: architecture support and specification adherence. By providing an un cached

transaction, a node can conduct transactions to I/O devices and other resources that are not

included in the cacheable shared memory space of the system. Also, RD 2 U provides direct

support for memory references signaled as non 2 cacheable by the CPU. The second goal of

adhering to a specification will allow the design to take advantage of industry standard system

support devices such as DMA, bus bridges, and networking support.

4.2.3. RD 2 I

RD 2 I is one of the transactions unique to a bus 2 based COMA multiprocessor. In traditional

systems, memory recovery and page write 2 backs to disk are an ongoing process. With

respect to main memory storage, these actions are governed solely by the operating system.

In the DICE multiprocessor, main memory is not only distributed but also of a cache structure.

Consequently, simply altering a page table entry and writing back a ‘copy’ of a page to disk is

insufficient to provide data integrity and coherence. For example, if a page is written back to

disk and copies are left in the local memories of processing nodes, regardless of what occurs

in the L1 and L2 caches, when the page frame is re 2 allocated by the operating system there

will be two different sets of data available.

When the RD 2 I transaction is used to write a page cached by any recipient of the data. Similar

to RD 2 U, WR 2 U can transfer a byte, word, double word, or even multiple blocks of data

using the compelled or packet mode of data transfer.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 19

4.4.1 Relocation mechanism

Figure 8 conceptually demonstrates how this replacement and relocation is handled in a

processor node. On a reference miss, the node decides whether relocation is necessary (1a).

It sends a data request on the bus while fetching the replaced data from the local memory

(2a). It puts the fetched data into the relocation buffer along with the state (3a). Upon the

arrival of missing data, it begins the relocate transaction, and the processor now can resume

its execution(4a). From the viewpoint of a remote node, when a relocate transaction is seen

on the bus, the node buffers the data with its address and state (1r). The node looks up the

AM state and tag memory to decide its priority in accepting the block it has just received (2r).

Based on the result of the state and tag look-up, it generates and sends to the arbiter a priority

vector, which is the 2-bit priority concatenated with its node ID (3r). In case of a tie in the 2-

bit priority, the node ID, the lower bits in the vector, will help decide the winner. After

arbitration, the result will be passed back to the controller, which will either update the AM

and the tag, or discard the buffered data (4r). The distributed arbitration determines the

unique winner which will accommodate the block, and all other nodes will discard the block,

thereby achieving our goal.

4.4.2 REP -C

The REP -C transaction is always performed on non-page fault generated replacements. It is

responsible for obtaining a copy of the block that contains the reference missed in the local

memory. Although the -C transaction is an unlocked block read as RD -M, following every REP

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 20

-C, without loss of tenure, is an REP -R transaction. REP -C is very similar to the transfer

mechanism of the RD -M transaction. A global request is issued and the node with ownership

responds by supplying the data. In addition to the data requested, the mastering node also

takes over the ownership attribute for the block. This is done to ensure that a location will

exist for the relocation transaction following the REP -C. A more complete description and an

example of the ownership transfer (and ownership relinquish) is given in [13].

4.4.3 REP -R

When REP -C completes the CPU request can be satisfied and allowed to execute the next

instruction. However, the issue of relocating the block which initially occupied the local

memory, causing the collision, still remains. The REP -R transaction utilizes the arbitration

protocol of the FB+ previously described to accomplish relocation. Without loss of the bus

tenure, the REP -R transaction is initiated immediately after a REP -C completes. The

transaction is completely controlled by the GBTC (Global Bus Transaction Controller, in Figure

2) and does not involve the LBTC. This allows the LBTC (Local Bus Transaction Controller) to

service the CPU for accesses to the local memory. The GBTC controls the HOST bus and places

a block transfer write request to the address of the block needed to be relocated. The global

bus interface views this as a packet mode transfer of the number of bytes equal to a block

size. Each remote node will search their local memory tags as in previous transactions,

however, the response of each node depends on the state of all the blocks in the set to which

the address maps. In addition, remote nodes do not simply handshake with the FB+

communication protocol but participate in an arbitration for the block being relocated. Once

nodes have determined their priorities using the scheme outlined in Section 3, each arbitrates

using the FB+ arbitration protocol. The arbitration priority of the relocation algorithm is such

that master-elect pre emption will take place and that only nodes participating in the

arbitration have the opportunity to win. When the arbitration completes, the winner will be

the node which takes the block being relocated. The priority of the node winning the

arbitration determines what state the block will be placed in. If an INV block or an SHN block

not of the same address wins, then the block can be placed in local memory in the EXL state.

As in the WR -H transaction, TAG[0] is used to remove the ambiguity of relocation. When a

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 21

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

SHN state node of the same address wins the arbitration, TAG[0] is used to determine if the

state should be EXL or SHO.

4.4.4 REP -Rp

In a bus-based COMA multiprocessor, page faults must be managed differently from

conventional SMPs. The primary reason is that the local memories of the system are caches

to the entire shared address space. Local memories are n way set-associative and therefore

have n locations per node where a page may be located. Also, a page fault in a traditional

system generally has no need to alter the location of data already in the system unless

memory is full. However, a page fault in a COMA system can result in a significant

redistribution of data due to a collision with the incoming page. This can occur if the incoming

page maps to a location in local memory which is occupied by block(s) of data in the EXL or

SHO state. When a page fault occurs in DICE, a page frame of memory must be guaranteed to

exist which maps to the incoming page. With sufficient unallocated memory, there exists such

a page frame [8]. However, guaranteeing available space somewhere in the system does not

guarantee available space in a specific node, nor does it guarantee that the available space is

contiguous. Since the concept of locality suggests that it would be highly beneficial if the node

originating the page fault should also be the recipient of the incoming page [15], clearing

specific locations for the incoming page may become necessary. Clearing a page of data in the

local memory may only require reserving space if no EXL or SHO attributes currently exist. In

the case where all the blocks are not in the INV or SHN state, a relocation transaction becomes

necessary for each of those blocks. When a page fault occurs, the GBTC on the node will begin

processing contiguous range of memory associated with the page. The GBTC will go through

each block address in the page range and mark INV and SHN copies with the Occupied tag

status. Blocks in the EXL or SHO state must be relocated as described in Section 4.4.3 with the

exception of the relocation buffer, it is not necessary in this case since there is currently not

a collision. Once an EXL or SHO block has been relocated the block frame is marked with the

Occupied state. When the last block address in the page range reached, the page fault support

by the GBTC is complete. Note that blocks coming in from disk and block relocation due to the

REP - Rp can be intermixed because of the priority assigned to the REP - Rp transaction and

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 22

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

the lower priority of the DMA device when performing the WR -U transaction to move the

page into memory. This is fully supported by the FB+ arbitration protocol and the round robin

fairness mechanism.

4.5 Synchronization, I/O transactions, and interrupt support

The TAS transaction is defined (in Table 1) as a read block followed by a write partial to

implement synchronization instructions such as test 2 and-set. The memory location being

accessed must remain under the control of a single processor for the duration of the

readmodify-write cycle. In order to implement this on the TI chip-set, two transactions are

required. However, the chip-set provides a means of securing the bus for the duration of both

the transactions. A LOCKED* signal input on the HOST bus side of the mastering chipset can

be asserted to ensure that no transfer of tenure occurs between transactions. In addition,

remote nodes participating in a locked transaction must also be informed so that local access

to the memory between the initial read and subsequent write is not allowed. The TAG[7:0]

signal lines are set to inform local nodes that the current transaction is atomic with respect

to global memory and a locked transaction on the global bus. The 2 U transactions are used

in I/O operations as mentioned. However, I/O transactions which involve DMA operations

must be treated differently. DMA operations may need to occupy a specific level of priority in

the hierarchy of bus transactions in order to ensure that disk access and other DMA transfers

are allowed adequate bus access. As discussed in Section 4.1, there are many levels of priority

available for bus arbitration. Any one of these priorities can be assigned to any bus

transaction, and the priorities of specific transactions do not affect the mechanics of the

communication protocol. The FB 1 specification and the TI chipset support various ways to

support the system interrupts. General messages can be sent via the bus using the standard

unlocked transactions. Interrupts can also be implemented using the arbitration message and

32 dedicated messages. These methods can be combined or used separately to implement

global interrupts and interrupts targeted for a specific node.

5 SUMMARY

Although the shared-bus SMP is a widely accepted architecture, its scalability is severely

limited due to limited bandwidth the bus can provide. We presented a global bus design for

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 23

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

DICE, a shared-bus COMA multiprocessor. The main contribution of this paper is in

demonstrating the feasibility of an efficient implementation of a bus-based COMA

multiprocessor. As microprocessors become faster and demand more bandwidth, the shared

bus becomes an even more serious bottleneck in such systems. Handling the problem of the

shared-bus bottleneck can be done in three complementary approaches. Firstly, a faster and

wider bus needs to be developed. Secondly, smart bus protocols such as more aggressive

pipelining are needed. Thirdly, memory requests should be serviced locally (or local memory

utilization should be high). With dynamic replication and migration of data through the AMs,

a COMA machine is expected to provide higher utilization of local memory than is otherwise

possible, which can result in low average memory access latency and low network traffic. As

the processor technology is progressing much faster than the bus technology, this potential

reduction in latency and bandwidth requirement can be a crucial advantage. Considering the

benefits of COMA and the moderate design complexity it adds to the conventional shared-

bus multiprocessor design, a bus-based COMA multiprocessor such as DICE can become a

viable candidate for the future shared-bus multiprocessor architecture.

ACKNOWLEDGMENT

The DICE project is supported by funding from Samsung Electronics, Seoul, Korea. Bland

Quattlebaum is with the Hewlett-Packard Company, Roseville, CA.

REFERENCES

[1] BAER, J.-L. AND WANG, W.-H. “On the Inclusion Property for Multi-level Cache

Hierarchies,” in Proceedings of the 15th International Symposium on Computer

Architecture, pp. 73 – 80, 1988.

[2] BERRY, M. et al., “The Perfect Club Benchmark: Effective Performance Evaluation of

Supercomputers,” in International Journal of Supercomputing Applications, Vol. 3, No.

3, 1989.

[3] GALLES, M. AND WILLIAMS, E. “Performance Optimizations, Implementation, and

Verification of the SGI Challenge Multiprocessor,” in Proceedings of the 27th International

Conference on System Sciences, Vol. 1, pp. 134 – 143, 1994.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 24

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

[4] GHARACHORLOO, K., LENOSKI, D., LAUDON, J., GIBBSON, P., GUPTA, A., AND HENNESSY,

J.L. “Memory Consistency and Event Ordering in Scalable Shared-Memory

Multiprocessors,” in Proceedings of the 17th International Symposium on Computer

Architecture, pp. 15 – 26, June 1990.

[5] HAGERSTEN, E., LANDIN, A., AND HARIDI, S. “DDM - A Cache-Only Memory

Architecture,” IEEE Computer Magazine, pp. 44 – 54, September 1992.

[6] HENNESSY, J.L. AND PATTERSON, D.A. Computer Architecture A Quantitative Approach,

Second Ed., Morgan Kaufmann Publishers, Inc., San Francisco, California, 1996.

[7] JAMIL, S. “Block Replacement in Cache-Only Memory Architecture Multiprocessors,”

M.S.E.E. Thesis, Electrical Engineering Department, University of Minnesota, June 1994.

[8] JAMIL, S. AND LEE, G. “Unallocated Memory Space in COMA Multiprocessors,” in

Proceedings of the 8th International Conference on Parallel and Distributed Computing

Systems, Orlando, Florida, September 1995.

[9] JOE, T. AND HENNESSY, J.L. “Evaluating the Memory Overhead Required for COMA

Architectures,” in Proceedings of the 21st Annual International Symposium on Computer

Architecture, pp. 82 – 93, April 1994.

[10] LAMPORT, L. “How to Make a Multiprocessor Computer that Correctly Executes

Multiprocess Programs,” in IEEE Transactions on Computers, C-28:9, pp. 241 – 248, September

1979.

[11] LANDIN, A. AND DAHLGREN, F. “Bus-Based COMA – Reducing Traffic in Shared-Bus

Multiprocessors,” in Proceedings of the 2nd International Symposium on High-

Performance Computer Architecture, pp. 95 – 105, February 1996.

[12] LEE, G. AND KONG, J. “Prospects of Distributed Shared Memory for Reducing Global

Traffic in Shared-Bus Multiprocessors,” in Proceedings of the 7th IASTED-ISMM International

Conference on Parallel and Distributed Computing and Systems, pp. 63 – 67, Washington, D.C.,

October 1995.

[13] LEE, G., KONG, J., AND CHO, S. “Coherence and Replacement Protocol for a Bus-Based

COMA Multiprocessor DICE,” Technical Report No. 96–008, Computer Science

Department, University of Minnesota, January 1996.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 25

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

[14] LOVETT, T. AND THAKKAR, S. “The Symmetry Multiprocessor System,” in Proceedings of

the 17th International Conference on Parallel Processing, pp. 303 – 310, August 1988.

[15] MARCHETTI, M., KONTOTHANASSIS, L., BIANCHINI, R., AND SCOTT, M.L. “Using Simple

Page Placement Policies to Reduce the Cost of Cache Fills in Coherent Shared-Memory

Systems,” in Proceedings of the 9th International Parallel Processing Symposium, April 1995.

[16] NAYFEHM B.A., OLUKOTUN, K., AND SINGH, J.P. “The Impact of Shared-Cache Clustering

in Small-Scale Shared-Memory Multiprocessors,” in Proceedings of the 2nd International

Symposium on High-Performance Co mputer Architecture, pp. 74 – 84, February 1996.

[17] QUATTLEBAUM, B., KINNEY, L., AND LEE, G. “Global Bus Implementation of DICE,”

DICE Project Technical Report No. 9, Electrical Engineering Department, University of

Minnesota, January 1994.

[18] QUATTLEBAUM, B., LEE, G., AND KINNEY, L. “Protocol Mapping in Bus-Based COMA

Multiprocessors,” DICE Project Technical Report No. 10, Electrical Engineering Department,

University of Minnesota, March 1994.

[19] SINGH, J. P., WEBER, W.-D., AND GUPTA, A. “SPLASH: Stanford Parallel Applications

for Shared- Memory,” in Computer Architecture News, 20(1):5 – 44, March 1992.

[20] WOO, S., OHARA, M., TORRIE, E., SINGH, J., AND GUPTA, A. “The SPLASH-2 Programs:

Characterization and Methodological Considerations,” in Proceedings of the 22nd

International Symposium on Computer Architecture, pp. 24 – 36, June 1995.

[21] B.W. Quattlebaum, L.L. Kinney, G. Lee, Global bus implementation of DICE, DICE

project technical report no. 9, Department of Electrical Engineering, University of Minnesota,

January 1994.

[22] B.W. Quattlebaum, G. Lee, L.L. Kinney, Protocol mapping in busbased COMA

multiprocessors, DICE project technical report no. 10, Department of Electrical Engineering,

University of Minnesota, March 1994.

[23] Microprocessor Systems — Futurebus 1 — Logical Protocol Specifications (ANSI/IEEE

Std 896.1 — 1994), IEEE, New York, 1994.

[24] Futurebus 1 Interface Family (Rev. 5.1), Texas Instruments, Linear Products Division,

Dallas, Texas, 1993.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 26

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

[25] M. Marchetti, L. Kontothanassis, R. Bianchini, M.L. Scott, Using simple page placement

policies to reduce the cost of cache fills in coherent shared memory systems, Proceedings of

the 9th International Parallel Processing Symposium, April 1995.

[26] G. Lee, B. Quattlebaum, S. Cho, L. Kinney, Global bus design of a bus-based COMA

multiprocessor DICE, Proceedings of the IEEE International Conference on Computer Design,

October 1996, pp. 231–240.

[27] T. Lovett, S. Thakkar, The symmetry multiprocessor system, Proceedings of the 17th

International Conference on Parallel Processing, August 1988, pp. 303–310.

[28] M Galles , E. Williams, Performance optimizations, implementation and verification of

the SGI challenge multiprocessor, Proceedings of the 27th Hawaiian International Conference

on System Sciences 1 (1994) 134–143.

[29] E. Hagersten, A. Landin, S. Haridi, DDM — a cache-only memory architecture, IEEE

Computer Magazine September (1992) 44–54.[30KSR-1 Technical Summary, Kendall Square

Research, Waltham, MA, 1992.

[31] G. Lee, Block replacement method in cache only memory architecture multiprocessor,

US patent no. 5 692 149.[32] S. Jamil, Block Replacement in Cache-Only Memory Architecture

Multiprocessors, M.S.E.E. Thesis, Department of Electrical Engineering, University of

Minnesota, June 1994.

[32] T. Joe, J.L. Hennessy, Evaluating the memory overhead required for COMA architectures,

Proceedings of the 21st International Symposium on Computer Architecture, April 1994,

pp. 82–93.

[33] Gyungho Lee, Bland Quattlebaum, Sangyeun Cho y, and Larry Kinney Dept. of Electrical

Engineering yDept. of Computer Science University of Minnesota Minneapolis, MN 55455

[34] Gyungho Leea,*, Bland W. Quattlebaumb, Sangyeun Choc, Larry L. Kinneyd a

Division of Engineering, University of Texas, San Antonio, TX 78249-0665, USA

bHewlett Packard Company, Roseville, CA 95747-6588, USA cDepartment of

Computer Science and Engineering, University of Minnesota, Minneapolis, MN

55455, USA dDepartment of Electrical and Computer Engineering, University of

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 27

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Minnesota, Minneapolis, MN 55455, USA Received 27 February 1998; received in

revised form 16 June 1998; accepted 18 June 1998

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-12 28

