
 

 

Fourier Analyses of Stagger-Period Sequences** 
Xubao Zhang*   

* Electrical & Electronic Department, Xi’an Electronic Science and Technology University, China; 

Research & Development, Unitron (Canada Branch), Sonova, Switzerland. xbzwdl@yahoo.com 

 

 

Abstract: Stagger-period sequences are a kind of 

temporal sequences, but Fourier analysis for a 

uniform-period sequence is not available to a 

stagger-period sequence; it means that the analytic 

conclusions would be  misleading. We first define 

essential concepts related to a stagger-period 

sequence and a stagger-lag autocorrelation matrix, 

and propose a Fourier transform pair of a stagger-

period deterministic  sequence and its spectrum; we 

analyze properties related to this transform pair, such 

as the orthogonality of a complex exponential 

sequence, spectral periodic extension, Toeplitz of 

circularly stagger-lag matrix and the staggered 

Paseval’s theorem, etc.; we verify inverses of each 

other of this pair, and derives a  convergence 

condition of the transform. Then, another Fourier 

transform pair of a stagger-lag autocorrelation matrix 

and its power spectrum density, properties related to 

this pair, inverses of each other of this pair and a 

convergence condition of the transform, in this paper, 

are also studied. During analyzing, the similarities 

and differences between the uniform-period and 

stagger-period counterparts are discussed. Two 

applications of these Fourier analyses, search of 

optimal stagger periods and spectrum estimation of 

stagger-period sequences, are also described in 

details. In the end, the advantages and methodology 

of this study are summarized.  
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1. Introduction 
 

In   the   fields   of   radar   transmission,   

 earthquake  prediction,  radio astronomy and 

weather  forecast,  etc.,  there  exists  a  kind  of 

temporal  sequences  and spatial  signals,  which 

characterize  stagger  periods and stagger intervals. 

Because  of  interferences  of  turbulence  conditions, 

the  astronomical  data  from  Laser-Doppler 

anemometry may be irregular, reference[1] presented 

a modified version of the Burg algorithm to make the 

spectrum  estimates  more  reasonable.  Because  of 

influences  of  geologic  structures,  the  geosensors  of  

earthquake prediction were not located at the uniform 

intervals[2],  the  outputs  of  their  sensing  system 

always  were  nonuniform-interval  array signals,  the 

maximum likelihood algorithm was still used but the 

new test  statistic  had  to  be  incorporated.  The 

uniform-period  transmission  of   Doppler   weather  

radars   causes range-velocity  ambiguity,  so  the 

stagger-period  pulse  transmission and multi-PRF 

have been  applied; reference[3,4]  developed 

effective  clutter  filters  which  matched the 

requirements  of  the  staggered  transmission of  the 

weather  radar. Reference[5]  presented  a  Dirichelet 

transform pair of nonuniformly sampling signals, but 

it  did  not  give a proof  of  inverses  of  each  other. 

Reference[6]  simply  proposed  a  Fourier  transform 

pair  of  a  stagger-period sequence  and  its  spectrum, 

and  introduced  its application, but did  not  prove 

inverses of each other of the transform pair. 

 ______________________ 
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     Currently there exists no consistent/integrated 

Fourier analysis theories to analyze the stagger-

period sequences as common uniform-period Fourier 

analyses do[7,8,9]. In the above projects, most of the 

researchers adopted the specific theories and 

different solutions for their own projects, their ideas 

were to modify signal processing algorithms for 

uniform-period sequences. In fact, if ones research 

the relationship between the uniform-period and 

stagger-period sequences, they probably and easily 

generalize the uniform-period Fourier analysis to the 

stagger-period that, and then, some staggered 

projects may be solved easy as in the uniform-period 

case. After many years’ study on the Fourier analyses 

of stagger-period sequences, based on the Fourier 

analyses of the uniform-period sequences, we have  

created the Fourier transform pair of a staggered 

deterministic sequence and its spectrum, analyzed the 

spectral properties, verified the inverses of each other 

and derived the relationship with its analogue 

spectrum, etc. Furthermore, by the same method as 

studying the stagger-period deterministic sequence, 

we have also created the Fourier transform pair of a 

stagger-lag autocorrelation matrix and its power 

spectrum density, and gave the related derivations 

and discusses. Two effective applications of the 

stagger-period analysis, search of the optimal stagger 

periods and spectrum estimation of a stagger-period 

echo sequence, were introduced in the end. We 

attempt to integrate the studied results into this 

paper; the entire analyses we obtained are relatively 

simple in expressions and much similar to those in 

the uniform-period Fourier analyses. 

 

2. Essential concepts and properties of 

stagger-period sequences 
 

If periods *  +  of discrete-time samplings 

* (  )+   *      + meet 

                                        (1) 

we  call the  sampling set  a stagger-period  sequence, 

briefly a staggered sequence, then {   } are its 

stagger periods. If  * (  )+ meets both (1) and  

                 (   )     

                       *      +,    *       +       (2) 

where    is a circular or uniform period of * (  )+ 

and equal to ∑   
  
   ,    is a number of all the 

mutually unequal stagger periods, we call * (  )+ a 

circular  stagger-period sequence or circularly  

staggered sequence. Assume that scale of the stagger 

periods meets           
           , then the  

set  of  the ordered integers *  + is a  stagger code of  

* (  )+. If *  +  are mutually prime and meet  

τ=                
/   

            (3) 

we  call τ the  highest  common  divisor  of  these  

periods. Obviously, τ=   ∑   
  
   ,① and an average 

sampling frequency is          . A circularly 

staggered sequence with      can be considered as 

a uniform-period sequence. A circularly staggered 

sequence also is briefly called a staggered sequence. 

A stagger-period sequence which meets (1) only is a 

noncircular stagger-period sequence or is considered 

as a circular stagger-period sequence with     . 

     Fig.1 shows a circularly staggered sequence 

* (  )+     (      ) ,   *       +        , 

denoted by bar lines. The stagger code, circular 

period and average sampling frequency are shown in 

the figure.  We can  figure out,     , τ=0.2/7s. The  

    Fig. 1  A stagger-period sinusoid sequence 

______________________ 

① Later in this paper, ∑   
  
    is denoted by ∑  . 
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dashed curve is the original analogue  signal.  

    Assume that a stagger-period random sequence 

{x(  )}, nϵ{0,±1,…} is stationary and meets (1) to 

(3); conventionally, its autocorrelation matrix is 

defined as  

       (     )   *  (  ) 
 (  )+             (4) 

where  *+ is expectation operator and * is complex 

conjugation. This equation looks like the auto-

correlation matrix of a non-stationary sequence. Even 

if   the   staggered   sequence  is  stationary,  its  auto-     

correlation matrix does not characterize Toeplitz, i.e. 

       (     )    (         )             

                                  *         +         (5) 

However, the autocorrelation matrix characterizes 

Hermitian, i.e. the matrix elements ensure that  

       (     )    
 (     )       

Furthermore, for a circularly staggered stationary 

sequence, its autocorrelation matrix has a 

characteristic of circular Toeplitz, i.e. 

       (     )    (           
)                   (6) 

where    is the stagger-period number. Thus, the 

elements of only one column cannot determine the 

entire  autocorrelation matrix, except the contiguous 

   columns, so many power spectrum analyses of a 

stationary sequence with uniform periods are not 

available to the staggered sequences.  

 

3. Fourier analysis of a stagger-period 

sequence 
 

Lemma: A staggered complex exponential 

sequence {       }   *      +which meets (1) to 

(3) is normalized, orthogonal in the  frequency region 

  ,          -,             , it is referred the 

spectral period of a stagger-period sequence (proved 

in the below), specifically, 

     
 

  
∫      (     )
    

     
df=  (     )  {

        
        

 

                  *      +            (7) 

Proof: If n=l, obviously (7) holds. If    , in terms 

of (1) to (3), we obtain that  

          =( ∑   ∑   
  
    

) τ     

              ∃ mϵ*      +, ∃       *        +      (8)        

It means  that there exists a  nonzero integer I  which 

makes        τ. Thus,  

     
 

  
∫      (     )
    

     
df=    ,   (     )-    

We call (7) the  time-domain  Dirac function  with 

stagger periods; it shows a similar expression of 

uniform-period Dirac function (discrete-time 

sequence) [7]. 

     Assuming that a staggered deterministic sequence 

 * (  )+,   *      + meets (1) to (3), we define 

Fourier transform of this sequence as  

       ( )  ∑  (  ) 
        

        

                                   ,          -             (9) 

where       . We call   ( ) a staggered Fourier 

transform of the * (  )+, or an amplitude spectrum 

of the sequence, briefly its spectrum. Let     , 

from the proof of (7), we know that there exists an 

integer    ∑   ∑   
  
   ,  ,    are the same as 

in (8), which makes      ,   *      +. Thus,  

     (    )  =                  

Since       ,           = . Thus,   (    )= 

  ( ) is of a spectral period   . 

    Given Fourier transform (9), we define its inverse 

Fourier transform as 

      (  )  
 

  
∫   ( ) 

        
    

     
    *      +   

                                                                             (10) 

and call it a staggered inverse Fourier transform. 

From (7), we know that the sequence *       +  is 

normalized, orthogonal in the frequency region 

  ,          - . This has indicated qualitatively 

that (10) is validated. In order to ensure that (9) and 

(10) both form a transform pair, we need to verify 

their inverses of each other. Inserting (9) into the 

right-side of (10), we obtain that if (9) is uniformly 

convergent, 

         
 

  
∫ ∑  (  ) 

     (     ) 
      

    

     
 

          =∑  (  )  (     )
 
         (in terms of (7)) 
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          =  (  ) 

     Using completely the same way as in uniform 

period analysis[8], we easily derive that the 

convergence condition of the Fourier transform (9) 

are absolutely summable, i.e. 

     ∑   (  ) 
 
    <              (11) 

This expression is similar to the condition of 

uniform-period Fourier transform [8]. 

     In practice, the staggered sequences always meet 

(11), so their spectra exist; theoretically, there is a 

sequence which does not meet (11), e.g. an impulse 

train with stagger periods. When we derive the 

relationship between a spectrum of a staggered 

sequence and its original analogue spectrum, we 

need to exploit a technique related to this train. 

Reference [7] describes a Fourier transform pair of 

an impulse train and its impulse spectrum with limit 

convergence operation. Assume that  ̃(  )   is a 

stagger-period impulse train which meet (1) to (3), 

and  ( ) is its original analogue signal, then,  ̃(  ) 

=  ( ) ∑  (    )
 
    . Without losing 

generalization, let     , and          , 

  *      + ,   *          + ,  ̃(  )  can be 

denoted by 

      ̃(  ) =  ( )  ∑ ∑  (        )
    
   

 
      (12)  

  Let also the spectrum of  ( )  be    ( ) , taking 

continuous-time Fourier transform of both sides  of  

(12)  and considering it as a sum of    uniform-

period trains, we can obtain that the spectrum of 

 ̃(  ) [7] , 

      ̃ ( )=
  

  
∫   ( )
 

  
∑ ∑  .  (   

    
    
   

                              
  

   
)/      (   )     

              =
 

  
 ∑   .  

 

  
/ ( ) 

                (13) 

where  ( )  ∑  
   

 

  
      

    is a modulation 

sequence.   From this Fourier analysis, we conclude 

that the spectrum of the stagger-period impulse train 

 ̃(  ) is composed of a train of the infinite analogue 

spectra which are displaced at frequency intervals of 

1/  , and are individually modulated in amplitude 

and phase. 

     In the case of a uniform-period train, its spectrum 

is composed of infinite replicas of its analogue 

spectrum, which are displaced at intervals of the 

sampling frequency   [7]. Since these replicas have 

exactly the same shape as the analogue spectrum, and 

their phases are unmodulated; it is possible to 

reconstruct the original analogue signal. However, in 

the case of a staggered train, its spectrum is 

composed of the infinite    modulated analogue 

spectra within an average sampling frequency   , i.e. 

   times crowding relatively to the uniform-period 

spectrum, so the spectrum is always in overlapping. 

Thus it is infeasible to reconstruct the original signal 

from the staggered spectrum. From the staggered 

spectrum (13), we can analyze that within one 

spectral period   =∑  /  , there are ∑   spectral 

lobes with the different shapes to be displaced at the 

equal interval   /  . With m=0, the spectral lobe is 

the highest, called main lobe; the other lobes with 

m 0 are modulated, of lower height, and called 

fence-lobes.  

Fig. 2 shows partial magnitude spectra    ( )  of a 

staggered sequence *    (     )+ , n=1,2,…, in 

terms of (9), denoted by the dotted and the dashed 

curves; as well as the spectrum of its analogue signal,  

  ( ), denoted by the solid curve,. The spectrum 

  ( ) is rectangular, and its bandwidth is   =7.5Hz, 

its spectral center is at 0Hz, and its height is 4. Two 

spectra of the staggered sequence with two lengths 

  =45 and 9, respectively; average  sampling 

frequency      Hz. In the case of   =9, these 

spectral lobes appear off rectangles; in the case 

of   =45, these spectral lobes approach to rectangles. 

Within a staggered spectral period(         ),  

there are totally 84 spectral lobes; here only six of 

them are shown, the two spectral lobes at f =0Hz are 

the highest. When     is increasing, the Gibbs 

oscillation will tend to disappear, i.e. the spectral jags 
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of each lobe will be smoothed  out. 

Fig.2  Spectrum of a Sinc sequence with stagger 

           periods  

 

     In order to compare the staggered spectra in Fig.2,  

Fig. 3 shows two magnitude spectra    ( )  of a 

uniform-period sequence *    (     )+, n=1,2,…, 

in terms of common uniform-period Fourier 

transform[9], as well as its analogue spectrum   ( ); 

the formers are with two lengths    =45 and 9, 

denoted by the dotted and dashed curves, 

respectively, and the latter, by the solid curve. Well-

known, when     , the spectrum   ( )  involves 

replicas of its analogue spectrum, displaced  at an 

interval of the sampling frequency   =30Hz, each of 

its repeat  spectra  have   exactly  the  same  shape  of   

    Fig.3  Spectrum of a Sinc sequence with uniform  

          periods     

  ( ), and only one spectrum stands up within one 

spectral period, i.e. sampling frequency width 30Hz. 

Thus, we can reconstruct the analogue signal from 

the uniform-period  spectrum.        

In fact, the correlations between the staggered  

samplings change in a little mess from those between 

uniform-period samplings; the spectrum of the 

staggered Fourier transform (9) is a little complex 

but it most validly represents relationship between all 

the spectral components of a staggered sequence; 

thus, number of its spectral lobes increase a lot and 

the complex shapes are reasonable.  

 Assuming that a staggered deterministic sequence 

{x(  )+   *      + , meets (1) to (3), with the 

transform pair of (9) and (10), we call the following 

relation,  

     ∑   (  ) 
  

    =
 

  
∫   ( )    
    

     
          (14) 

Parseval’s theorem of the staggered sequence. The 

relation is similar to that Parseval’s theorem of a 

uniform-period sequence[9]. 

Proof: Inserting (9) into the right-side of (14), we can 

obtain that    

 

  
∫ ∑  (  )

 
    ∑   (  ) 

    (     ) 
      

    

     
 

     =∑   (  ) 
  

                         (in terms of (7)) 

This theorem indicates that in the case of stagger 

periods, the total energy of a sequence is equal to the 

integral of its energy spectrum density within a 

spectral period. Thus, this relation also makes sense 

in  physics. Reference[10] extended Parseval’s 

relation from uniform-period case to nonuniform-

period case, the resulting relation is similar to the 

uniform-period Parseval’s relation too. His definition 

of the spectrum of a nonuniform-period sequence is 

complicated, so the proof of the generalized 

Paseval’s relation also is complicated. 

 

4. Fourier analysis of a stagger-lag  

Autocorrelation matrix 
 

    Assuming    that   a    stagger-period    stationary 

sequence {x(  )+   *      +  meets (1) to (3) and 

ergodicty, in terms of (4) and (9), we can obtain the 
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power spectrum density (PSD) of the sequence of 

length    +1,  

   
 

     
 *       

( )  +=
 

     
∑ ∑   

  

     
  

  
     

            

                                (     ) 
     (     )          (15) 

With     , let    be integer times of    and 

    , we can denote        ,   {    

          }   *        +  In terms of the 

circular period of *  +, or the properties of (2) and 

(6), the right-side of (15) become 

       
 

     
∑ ∑ ∑  (      

    
   

     

        
  )  

  
     

 

                                             (      
   )     

When      , *      
+   is displaced by       

along  *  + ; since    *      + ,       
 can be 

denoted by   ,   *      +. Thus, we define PSD 

of the {x (  )+  or Fourier transform of its 

autocorrelation matrix as  

       ( )=       
         

     
∑ ∑  (     )

    
   

  

     
  

           (     )         

              =
 

  
∑ ∑  (     )

    
   

 
           (     ) 

                                      ,          -          (16) 

where   =1/τ. This definition indicates the relatively 

powers of different frequency components, and 

  ( ) has real, nonnegative values. With the same 

way as the spectral period of (9) is proved, we can 

verify that    still is the spectral period of the PSD in 

(16). Because of the circular Toeplitz property (6) of 

the autocorrelation matrix, the definition (16) using 

only the    column elements is reasonable. Fourier 

transform of the lth column of the stagger-lag 

autocorrelation matrix forms a sub-PSD of the 

column, i.e.  

        ( )=∑  (     )
 
           (     ) 

                                                *        +      (17) 

This sub-PSD is only based on the  (     )  of 

observation  time    ,  and  cannot   guarantee   to   be 

positive values at all the frequencies.  

     We define the inverse of Fourier transform (16) of 

a staggered autocorrelation matrix as  

      (     )=
  

  
∫    ( ) 

    (     )  
    

     
 

                     *      +   *        +        (18) 

where    ( )  results from (17). We also call (18) 

spectral decomposition of the stagger-lag auto-

correlation matrix. For simplicity, the staggered 

Fourier transform pair (16) and (18) can have another 

version, 

       ( )= ∑    ( )
    
    

               =∑ ∑  (     )
 
    

    
          (     )    

                                          ,          -         (19) 

      (     )=
 

  
∫    ( ) 

    (     )  
    

     
 

                       *      +   *        +      (20) 

In the case of a stagger-period sequence, contiguous 

   columns of an autocorrelation matrix involve all 

information of the matrix, the inverse Fourier 

transform of the stagger-lag autocorrelation matrix 

can represent as    dimensions. However, in the case 

of a uniform-period sequence, only one column of an 

autocorrelation matrix involves all information of the 

matrix, the Fourier transform pair of the uniform-lag 

autocorrelation sequence[9] is the special case of (19) 

and (20) with     . Conventionally, the inverse 

Fourier transform (20) can be called Weinner-

Khimchin equation of the staggered sequence. For 

validity of the pair (19) and (20), their inverses of 

each other need to be verified. Inserting the sub-PSD 

of (17) into the right-side of (20), we obtain that 

     
 

  
∫ ∑  (     )

 
          ,(     ) (     )-  

    

     
  

     =∑  (     )
 
      (     )      (in terms of (7)) 

     =  (     ) 

The Fourier transform (19) of the stagger-lag auto-

correlation matrix has an expression similar to (9) of 

the staggered sequence. Thus, the convergence 

condition of the transform (19) is also absolute 

summable and easy to be derived, i.e.  

     ∑ ∑   (     )   
 
    

  
                            (21) 

This  convergence  condition  is  sufficient   but   not 
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necessary as that of Fourier transform of  uniform-

lag auto-correlation sequence[9]. 

      Assume that a triangular autocorrelation matrix 

with stagger lags,  (     ), is 

      (     )={
                             
                                             

  

                                          *       +            (23)   

where    is a half of  bottom  time  width of  the 

triangle. Fig.4 shows the sequence of  (     ) with  

reference time     , and its parameters: the stagger 

code, circular period   , average sampling frequency  

   Fig. 4 A stagger-lag triangular autocorrelation  

             sequence 

 

  . The dotted curve represents the analogue auto-

correlation function; the bar lines represent the 

stagger-lag autocorrelation sequence. 

     Fig.5 shows Fourier transform (PSD) of the 

stagger-lag autocorrelation matrix of  (23)    *     +, 

with different lengths           . Because of 

circular Toeplitz, the spectral period    is 2.5kHz. 

For each spectrum, there is ten spectral lobes within 

one    : the main lobe is the highest at 0Hz and the 

other nine fence-lobes are lower, the lowest one is at 

1.25kHz. The two PSDs are symmetric about the mid 

frequency point 1.25kHz. When    is enough large 

to make  (   
   ) =0, e.g.,   =8, all values of the 

PSD   ( ) are positive reals; otherwise, e.g. when 

small   =4, values of the calculated   ( )  are 

negative at some frequencies. In fact, when length of 

an auto-correlation sequence is cut short enough, the 

autocorrelation may not represent the auto-  

correlation  of   a  practical   sequence,   so   negative            

     Fig.5  PSDs of a stagger-lag triangular     

                autocorrelation matrix 

values of the power spectrum appear at some 

frequencies. In Fourier analysis of  uniform-period 

sequences, such PSD behaviour also occurs if length 

of an autocorrelation sequence is incomplete.     

    Fig.6 shows PSDs of a uniform-lag triangular 

autocorrelation with different lengths   =8 and 4, 

the autocorrelation sequence is  

 (   )={
                                 
                                            

 

                                     {         }             (24)   

where    is the uniformly sampling period. We 

selected    =   /   and the analogue autocorrelation 

function are the same as in Fig.4. in Fig.6, the solid 

curve represents the PSD of   =8, and the  dashed 

curve,   =4. In comparison of Fig.5 to Fig.6, we can 

see that the PSDs of the triangular autocorrelations 

with stagger lags and uniform lags are close within [-

375, 375] Hz, the region is a spectral period of the 

uniform-lag DSP, the main lobes should be the 

squared Sinc function if without overlapping; the two  

spectra may be very different outside [-375,375] Hz, 

the stagger-lag fence-lobes overlap very much and 

relatively high; those uniform-lag lobes overlap 

slightly and almost no fence-lobe with   =8, but the 

repeat spectral lobes are as strong as its main lobe.  
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      Fig.6  PSDs of a uniform-lag triangular      

                 Autocorrelation sequence 

 

5. Applications of  stagger-period Fourier    

           analyses      
 

     In a modern radars, Doppler frequencies of 

receiving echoes are very high because the 

aircraft/target velocity is very high. If we have to 

select the high PRF(pulse repeat frequency) with 

uniform-period transmission, the range to observe 

the targets decrease largely. As pointed out in the 

section 3, the spectral period    of a stagger-period 

sequence is extended much relatively to the 

spectrum of a uniform-period sequence. With this 

principle, stagger-period transmission of a Doppler 

radar can efficiently eliminate such range-velocity 

ambiguity. The staggered spectrum estimation (9) is 

recommended for searching the best stagger periods 

for the optimal radar target detection.  

   With the Newman Pearson Criterion, the optimum 

weights of staggered FIR filters are a solution of a 

linear system of the complex equations. Assume that 

filter weights are *  (  )+ , n=1,…,   ,     is a 

number of coherent echo samplings, l=1,…,   ,    

is a number of filters in a bank. At first, we need a 

given staggered  covariance matrix of the clutters 

plus noise and a given staggered target signal vector 

which is averages of an aircraft echoes over all 

Doppler frequencies; they should be prior knowledge. 

This algorithm is called the Match Algorithm which 

enable the S/N improvement factor to be maximum, 

as that factor obtained with the uniform PRF optimal 

algorithm. After a pulse train is filtered for Nw sliding 

windows, outputs of these filters are summed and the 

filtering system forms a relatively flat frequency 

response over the Doppler frequency region. This 

response is called a velocity response of the 

staggered MTI (moving target indicator) filters. It 

can be calculated by 

            ( )= 
 

  
∑    ( ) 
  
    

where   ( ) is the frequency response of the lth MTI 

filter,   is Doppler frequency of a target;   ( ) can 

be calculated in terms of (9), replacing  (  ) with 

  (  ) . For the optimal Doppler target detection, 

  ( )  is requested to be a flat response. So 

nonflatness of the velocity response is defined as 

       =       *  ( )+         *  ( )+ 

where    is passband region of the velocity response 

as the staggered spectral period    described in the 

section 3. Different stagger codes {          
+ 

result in different *  ( )+  and different *  + . The 

less the   , the flatter the    ( ). The optimal stagger 

code can be solved with the following discrete 

nonlinear mathematical programming 

     

{
 
 

 
 
     (          

)                       

          
                    

    *  +      {  }                   
 

  
∑   
  
                                          

            (25) 

where    is a given stagger ratio, and    is a given 

extension factor of blind speed, equal to a ratio of the 

staggered spectral period to the uniformed spectral 

period, see the section 3. When several heuristic 

strategies are incorporated, the mathematical 

programming can be efficiently solved. For example, 

the search frequency region    is not selected as the 

entire staggered spectral period, but rather a part of 

the period, i.e. where the Doppler targets often 

happen, we call the frequency region the passband 
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region   . Based on spectral parameters of the 

terrain clutter: power, center and bandwidth, we 

selected the common clutter spectral model, 

Gaussian spectrum[11], and calculated out    

optimum filters, then the stagger code can be 

searched out with (25).   

    Fig.7 shows velocity responses of  two  banks of 

MTI filters with the same   (1.2) and  very close    

(27.6 and 27.4) and two searched stagger codes. The 

two sets of MTI filtering weights match different 

stagger codes respectively and both are optimum to 

suppress the given terrain clutter; but the nonflatness 

of their velocity responses are much different:    

with the stagger code (25,29,26, 28,30)  is 16.3 dB, 

the best code, and    with the stagger code 

(25,26,29,30,27) is 25.7 dB, the worst code. After 

obtained the best code and given average sampling 

frequency, following the section 2, we can calculate 

the best corresponding stagger periods. 

       Fig.7 Comparison of the best to the worst  

                 velocity responses                

Another application of the stagger-period Fourier 

analysis is regarding spectrum estimation. 

Reference[12] proposed a uniform-period method of 

autocorrelation spectral density to produce the 

unbiased estimates with phase information, and was 

going to start the same estimation under the stagger-

period condition. Here one of our great examples is a 

staggered LP(linear prediction) spectrum estimation. 

Given that  ̂(     )  is an autocorrelation matrix 

estimate of a circularly staggered stationary sequence; 

we selected the sampling number     , the stagger 

code is (25,29,26,28,30)  and average sampling 

frequency           with (1) to (3), we calculated 

out that the corresponding stagger periods are [2.516, 

2.919, 2.617, 2.818, 3.019] ms. Furthermore, assume 

that * ̂(  )+   *         + are estimates of one-

step backward prediction coefficients of the sequence, 

then * ̂(  )+  are solved by the following Yule-

Walker equation with stagger periods, 

∑  ̂(  )
    

    ̂(     )=  ̂(     )     {         } 

The staggered LP spectrum estimate at observation 

time    is defined as  

   (    )    

   
 (  )

     ∑  ̂(  )    ,     (     )-
    

     
       (26) 

where  (  ) is the prediction error power at time   . 

The LP estimation is a nonlinear and parametric 

method. In order to evaluate the performance, we 

also calculated spectral estimates of the same clutter 

echoes with uniform periods, which use the average 

sampling period 2.778 ms as the uniformly sampling 

period.  

     Fig.8 shows two spectra of the stagger-period and 

the uniform-period LP estimations, as well as the 

spectrum of the tested analogue process. The dashed 

curve represents the stagger-period estimates, and the 

dotted curve, the uniform-period estimates, and the 

solid curve, spectrum of the tested analogue process,. 

The analogue process was selected as a bimodal 

Gaussian clutter echo[11], which involves a terrain 

clutter and a weather clutter; the former’s  

parameters are power/noise=60dB, spectral 

center=72Hz and standard variance=7.2Hz, and the 

latter’s parameters are power/noise=40dB,  spectral 

center=144Hz and standard variance=14.4Hz. In 

Fig.8, the X axis represents the normalized frequency 

f/Fr Fr is the uniformly sampling frequency,  it was 

selected to be equal to the average sampling 
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frequency Fa of the staggered echoes; the Y axis 

represents     the     normalized     power     spectrum, 

               

   Fig.8 Comparison of a stagger-period to uniform-  

             period spectrum estimations           

 

   (    )/Pp, Pp is the maximum of    (    ). We 

can see that the estimates with the stagger periods 

and uniform periods are almost the same within 

region 0~Fr, the fitness of the two estimations to the 

analogue spectrum is good although these estimated 

lobes show the split peaks; however, the stagger-

period estimates are completely different from the 

uniform-period those with f>Fr, the uniform-period 

estimation shows a spectral replica in every Fr region 

but the stagger-period estimation does not. The 

stagger-period estimation behaves with a great 

advantage: it is able to restrain ambiguity of repeat 

spectra caused by the uniform-period estimation. 

Additionally, this staggered estimation behaves with 

close spectrum fitness, high  bimodal resolution with 

a short sequence(  =5); but it shows possible peak-

bias due to spectrum split, and large computation 

load and word length are required. The stagger-

period estimation is applicable to spectrum 

estimations which require high resolution, especially 

to off-line spectral analysis. 

Based on the staggered Furious analyses in this 

paper, we are going to study stagger-period, optimal  

FIR, IIR  and  lattice  filters,  and  to  enable  them to 

behave as under the uniform-period condition. 

6. Summarization 
 

     This paper has comprehensively described the 

Fourier analyses for the staggered sequences and the 

staggered autocorrelation matrixes. The creative 

work is based on the successes of the existing 

Fourier analyses for uniform-period sequences. The 

main work of this paper is the proposed two Fourier 

transform pairs for both the stagger-period sequence 

and the stagger-lag autocorrelation matrix, and the 

verified inverses of each other. At first, this paper 

defines the new concepts related to the transform 

pairs, such as the time-domain orthogonality of the 

staggered complex exponential sequence and the 

Toeplitz property of the circularly staggered auto-

correlation matrix, etc. In the case of a uniform-

period sequence, its spectrum and PSD are exactly 

the same as those of its original analogue signal 

respectively so long as the spectral overlap does not 

occur. Unlike the spectrum of a uniform-period 

sequence, the stagger-period spectrum forms 

modulated-differently spectral lobes; the number of 

these lobes increases by     multiples within an 

average sampling frequency, i.e.    times crowding 

relatively to the uniform-period spectrum; so these 

spectral lobes always overlap. The more the 

staggered period number of a sequence, the wider its 

extended spectral period, than the uniform-period 

case. This property does not make sense for restoring 

the original signal from the staggered spectrum; 

however, the staggered Fourier analysis expressions 

truly represent relationship between all the spectral 

components of a staggered sequence because the 

sampling periods in the analytic expressions match 

the irregularly staggered periods of a sequence. 

Furthermore, based on this paper’s analyses, the 

staggered spectrum shows a great effect of periodic 

extension, ∑        multiples of the average 

sampling frequency, so it is helpful to eliminate the 

range-velocity ambiguity of a Doppler radar echoes 

and   to   restrain    the    spectrum    repeat    of    the   
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uniform-period spectrum estimation.  

     These expressions of Fourier analyses are 

relatively simple and similar to those counterparts of 

uniform-period analyses. This is a major difference 

between our results and the other paper’s results. The 

methodology of this unique study is 1) to convert 

general stagger periods of a sequence into circularly 

stagger periods; 2) to use the uniform-period theories 

for creating Fourier analyses of the circularly 

staggered sequences, in the case of    =1, the 

expressions of the staggered Fourier analyses in this 

paper  are the same as those with uniform periods; 3) 

to make the highest common divisor of the stagger 

periods for simplifying analytic expressions; 4) to 

properly select the number of the stagger periods and 

stagger code so that the analyses can be used for 

various, specific practices. These staggered analytic 

expressions are relatively simple and  consistent with 

those common uniform-period expressions. Although 

the analyses in this paper requires the stagger code to 

meet (2) and (3), we can find such a code or an 

approximate code in practical applications.  

     The future work on the Fourier analysis with 

stagger periods can be their practical applications in 

signal processing systems, such as implemented 

structures of the FIR and IIR and lattice filtering for 

the stagger-period sequences, the spectrum  

estimation with stagger periods, and their 

performance evaluations. 
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