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Abstract  
  
Caching can reduce the bandwidth requirement in a mo-bile 
computing environment. However, due to battery power 
limitations, a wireless mobile computer may of-ten be 
forced to operate in a doze or even totally dis-connected 
mode. As a result, the mobile computer may miss some 
cache invalidation reports broadcasted by a server, forcing 
it to discard the entire cache contents after waking up. In this 
paper, we present an energy-e cient cache invalidation 
method, called GCORE, that allows a mobile computer to 
operate in a discon-nected mode to save battery while still 
retaining most of the caching bene ts after a reconnection. 
We present an e cient implementation of GCORE and 
conduct simulations to evaluate its caching e ectiveness. The 
results show that GCORE can substantially improve mobile 
caching by reducing the communication band-width (or 
energy consumption) for query processing.  

  

1  Introduction   
  
Mobile computing enables people with unrestricted mo-
bility. It can satisfy people's information needs at any time 
and in any place. In mobile computing, battery-powered, 
portable machines can be used by users to query the 
information/database servers through the wireless 
communication channels [1, 2, 3, 4]. However, due to 
limitations on battery technologies, these mobile computers 
may be frequently disconnected (i.e., pow-ered o ) in order 
to  conserve battery energy.  

In general, the bandwidth of the wireless channels is 
rather limited. Thus, caching of frequently used data in a 
mobile computer can be an e ective approach to reducing the 
wireless bandwidth requirement [4]. Once caching is used, 
a cache invalidation strategy is needed to ensure the data 
cached in the mobile computers are consistent with those 
stored in the server. However, if mobile computers must be 

powered o for energy con-servation, cache consistency may 
be di cult to  enforce.  

Depending on whether or not the server maintains the  

state of the mobile clients' cache, there are two categories of 
invalidation strategies [4]. In the rst category, the server 
knows which data are cached by which mobile computers and 
it is called a stateful server. Once a data item is changed, the 
server sends inval-idation messages to the clients that are 
caching that particular data. The server has to locate the clients. 
But, disconnected mobile clients cannot be contacted by the 
server. Thus, a disconnection by a mobile com-puter  
automatically means its cache is no longer valid. Moreover, if  
a mobile computer wants to relocate, it may have to notify the 
servers. This implies some re-strictions on the freedom of the 
mobile computer.     

In the second category, the server is not aware of the state of 
its clients' cache and it is called a stateless server. The server 
does not even know which mobile computers are currently 
active. To ensure cache con-sistency, the server simply 
periodically broadcasts an invalidation report containing the 
data items that have been updated recently. The mobile clients 
listen to the broadcast and invalidate their caches accordingly. 
   

In [4], three cache invalidation schemes using di er-ent 
invalidation reports were proposed for the case of a stateless 
server. In these three schemes, no attempt was made to 
check with the server whether or not some of the cached 
objects are still valid after a reconnection. As a result, when 
a mobile computer wakes up, it may have to discard the 
entire cache contents if the discon-nection has been too long. 
This is because the mobile computer does not know whether 
or not some of its cached objects have been updated since it 
became dis-connected. Discarding the entire cache because 
of a disconnection can be costly as most of the bene ts of 
caching are lost, especially if most of the cached objects are 
still valid.    

In this paper, we propose an energy-e cient cache in-validation 
scheme that salvages as many cached objects as possible after a 
reconnection. Unlike the schemes proposed in [4], which do not 
check cache validity after a reconnection, our schemes check the 
cache validity with the server, if necessary, and retain as many 
valid objects as possible. Since checking cache validity not only 
requires uplink bandwidth but also consumes bat-tery energy, it 
must be done e ciently. One simple checking approach is to send 
all the cached object ids  
  
to the server. This is costly because the number of object ids 
can be large. One possible approach to re-ducing the overhead 

of validity checking is to do it at a group level, instead of object 
level. With such a simple grouping scheme, however, the entire 
group must be invalidated if any of the objects in the group has 
been updated. In this paper, we propose a new scheme called  
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Grouping with COld update-set REtention (GCORE). In 
GCORE, instead of invalidating the entire group, we retain the 
cold update set of the objects in the group if all the updated 
objects (most likely belong to the hot update set) have been 
included in the most recently broadcasted invalidation report. 
   

Here, the hot update set represents the set of ob-jects that are 
frequently updated by transactions in the server, while the cold 
update set is the set of objects that are less frequently updated. 
Obviously, some of the objects referenced by queries and 
cached in a mobile computer may belong to the hot update set 
and thus may often be invalidated. Nevertheless, objects that 
are frequently updated are highly likely to be included in the 
latest broadcast invalidation report. Therefore, the objects in a 
group that belong to the cold update set are likely to be retained. 
GCORE tries to e ciently retain, if possible, the cold update set 
of a group on the mobile computer.  
  

To evaluate and compare the performance of GCORE with these 
schemes, we developed an event-driven simulator. The e 
ectiveness of caching is com-puted as the bandwidth requirement 
for query process-ing in a mobile computer. Lower bandwidth 
require-ment means more energy-e cient caching in a mobile 
computer because it consumes less energy to receive and send 
messages. The simulation results show that compared with no 
checking (such as the ones presented in [4]) and simple checking 
schemes, both GCORE and the simple grouping schemes signi 
cantly improve the caching e ectiveness by reducing the bandwidth 
re-quirement for query processing. Moreover, GCORE is more 
energy e cient than th  e simple grouping scheme.  

The recent popularity of portable personal comput-ers has 
attracted a lot of interests in mobile computing. There have 
been many papers discussing other aspects of supporting 
mobile computing, including location management, data 
replication, communication and other system design issues, 
such as [5, 6, 7, 8, 9, 10, 11]. These citations are by no means 
exhaustive as many research and development projects are 
currently being actively conducted to build the national 
information infrastructure. Our attentions in this paper speci - 
cally focus on the issues of supporting energy-e cient caching 
in a wireless mobile computing environment, closely related to 
[4, 1]. E ective caching and other is-sues for supporting mobile 
computing are very impor-tant in the future for providing 
information services to users at any time and in any place. 
   

The rest of the paper is organized as follows. Sec-tion 2 
describes the cache invalidation schemes for  

  
Figure 1: A wireless mobile computing environment.  

  
  
a stateless server. Section 3 presents the simulation model. 
Section 4 discusses the simulation results.  
  
2 Cache invalidation schemes   
  
Fig. 1 shows a generic wireless mobile computing 
environment, similar to the one described in [4, 2]. There are 
multiple wireless radio cells. Each cell has a mobile server that 
is equipped with wireless communication capability. It stores a 
complete copy of the database. The mobile servers are 
connected through a communi-cation network (typically 
wired). A mobile computer can connect to a server (uplink) 
through a wireless com-munication channel. It can disconnect 
from the server by operating in a dose mode (consumes signi 
cantly less energy) or a power-o mode. It can move from one 
cell to another cell. The server can communicate with a 
particular mobile computer through a wireless channel, if the 
mobile computer is not powered o . We assumed that data are 
only updated in the servers. Mo-bile computers only read the 
data and do not update them. To ensure cache consistency, the 
server periodi-cally broadcasts invalidation reports and all the 
mobile computers, if active, listen to the reports and invalidate 
their caches accordingly. Database is assumed to be completely 
replicated in the mobile servers, so that when a mobile 
computer moves to another cell, it re-ceives similar  

 invalidation reports.  
Frequently referenced objects by queries are cached in a 

mobile computer. We assumed that the cache at the mobile 
computer is a nonvolatile memory such as a hard disk. After a 
disconnection, the content of the cache can still be retrieved. 
The server keeps track of the object ids that are recently 
updated and broadcasts an invalidation report every L seconds. 
The most re-cent invalidation report broadcasted is denoted as 
IR in this paper. IR consists of the current timestamp T  
 No-Checking:  

 
if (Tlb < (T , w L)) invalidate  
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  the entire 
cache;  else   f   

for 8oi 2 IR f   

 if (oi is in the cache) and (ti > t
c
i )   

invalidate oi;   
  g   
 g   

8q 2 QL  
 f   

if all the objects referenced by q are in the cache  
 process q;    else   
 send the missed object ids to the server;    g   

Tlb = T ;   

  
Figure 2: Algorithm for query processing using the 
nochecking scheme.  
  
  
and a list of (oi; ti) such that ti > (T ,w L), where oi is an object 
id and ti is its corresponding most recent update timestamp, 
and w is the invalidation broadcast window. Namely, IR 
contains the update history of the past w broadcast intervals.  
  
2.1 No-checking caching scheme   
  
Due to the constraint of limited energy, a mobile com-puter is 
usually required to operate in a doze mode (not active) or even 
to be completely disconnected for a prolonged period of time. 
As a result, a mobile client may miss certain invalidation 
messages broadcasted by the server. Upon missing an 
invalidation report, a mo-bile computer may have to discard the 
entire cache, since it does not know which parts of the cache is 
valid. This simple scheme is called the no-checking scheme in 
this paper and is similar to the broadcasting timestamp scheme 
proposed in [4]. Fig. 2 shows the query processing algorithm 
for a mobile computer after re-ceiving an invalidation report. 
Throughout this paper, we assumed that all the queries are 
batched in a query list, QL, and are not processed until a mobile 
computer invalidates its cache after receiving an invalidation 
re-port. Also, the timestamp of the latest invalidation report 
received, denoted by Tlb , is also reliably main-tained so that 
after a mobile computer wakes up from a disconnection, it 
knows the timestamp of the latest  report that it received.  

In Fig. 2, tc
i is the timetamp of the cached copy of ob-ject oi 

. For those objects that are missed in the cache, the object ids 
are sent to the server and the server then  
sends back the data and the associated update time-stamps to 
the mobile computer. They will be again cached in the mobile 
computer. For the no-checking scheme shown in Fig. 2, if a 
mobile computer has been disconnected for more than w 
broadcast intervals, then it must discard the entire cache 
contents once it re-connects. This can signi cantly increase the 
wireless bandwidth requirement between the mobile computer 
and the server as most of the objects subsequently ref-erenced 
by queries result in cache misses.  
  
  

2.2 Simple-checking caching scheme   
  
Note that even after a long period of disconnection, we may 
still retain many objects in the cache. This can signi cantly 
reduce the bandwidth requirement be-cause the mobile 
computer can use its cached data. In order to retain cached 
data, we need to identify which cached data are  still valid.  

There are several approaches to identifying valid cache 
entries after a disconnection. They involve dif-ferent trade-o s. 
To accurately identify the valid cache entries, a mobile 
computer can send all the cached ob-ject ids and their 
corresponding timestamps. However, this requires a lot of 
uplink bandwidth as well as bat-tery energy. On the other hand, 
the mobile computer can send group ids and group timestamps; 
the validity can be checked at the group level. This reduces the 
uplink bandwidth requirement. But, a single object updated 
essentially invalidates the entire group. As a result, the amount 
of cached objects salvaged after a reconnection may be quite 
small. GCORE combines the advantages of both schemes by 
salvaging as many cached objects as possible and consumes as 
little uplink cost as  possbile.  

Note that it is su cient to just send Tlb with object ids or group 
ids to the server. The object timestamps or group timestamps 
need not be sent. This is because once a mobile computer 
processes a new IR, all the valid cache entries can be viewed as 
being timestamped at that moment. The server can check the 
validity of an object or a group of objects based  on Tlb .  

For the simple checking scheme, only Tlb and all the object 
ids that are still not yet invalidated by a mobile computer are 
sent to the server. The server then com-pares Tlb with the object 
update timestamp stored in the server and sends a validity 
report back to the mo-bile computer. This validity report can 
simply be a bit vector, with each bit indicating yes or no for the 
cor-responding object. To process queries, a mobile com-puter 
rst invalidates its cache according to IR. Then, if the mobile 
computer just wakes up from a disconnection and Tlb < (T , w 

L), it sends the cached objects that are not yet invalidated to the 
server for validity checking. After receiving the validity report 
from the server, the mobile computer then processes the 
queries.  

2.3 Simple-grouping caching scheme   
  
In order to reduce the uplink communication costs for validity 
checking, the database can be partitioned into a number of 
groups and a mobile computer checks its cache validity at the 
group level. The grouping function can be simply a modulo 
function. Or it can be di er-ent for di erent types of objects. 
Whatever grouping function is chosen, it must be agreed upon 
between the server and the mobile computer. Data objects 
belong-ing to a group may or may not be in a mobile cache. 
But, the group validity checking is not a ected by the grouping 
function or by the fact that some of the group objects are not in 
a mobile cache. The grouping of ob-jects is used only for cache 
validity checking after a mo-bile computer reconnects, it is not 
used by the server for broadcasting invalidation  reports.  

The query processing algorithm for simple grouping is 
similar to the one for simple checking, except that it sends 
much less information to the server and as a re-sult requires 
much less uplink bandwidth. It is the same as GCORE, to be 
described next, in sending the group ids and Tlb to the server for 
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group validity checking. However, it di ers from GCORE in the 
way the server determines whether or not a group is valid. In 
the sim-ple grouping scheme, if any object within a group is 
updated after Tlb, then the entire group is considered to be 
invalid. Thus, the amount of cached objects that can be retained 
may be small after a reconnection, re-sulting in a large amount 
of uplink and downlink costs due to cache misses from future 
query processing.  

  
2.4 Grouping with cold update-set re-tention  

(GCORE)   
  
To avoid discarding of a group, we present a group-ing with 
cold update-set retention scheme to improve the caching e 
ectiveness. Similar to the simple group-ing scheme, the 
server partitions the database into a number of groups. So, it 
incurs relatively small uplink costs for validity checking. 
However, unlike the simple grouping scheme, GCORE tries 
to salvage a group so that the future downlink costs due to 
cache misses can be signi cantly  reduced.  

In addition to grouping, the server also dynamically identi es 
hot update set that has been updated in a group and excludes it 
from the group when checking the group's validity. If all the 
updated object ids in a group have already been included in IR, 
these objects should be invalidated by the mobile computer 
when it receives IR. With the hot update set excluded from a 
group, the server can conclude that the objects that are not 
updated in the group can be retained in the cache and validate 
the rest of the group. This scheme is therefore referred to as 
grouping with cold update-set retention in this paper. GCORE 
is energy e cient because it incurs both low uplink costs for 
validity checking and low downlink costs as it retains more 
cached objects.  
  
struct group_table_entry     
{   

double time; int  

 total_wW;  
struct pair *uplist; }  

group_table[];  
  
  

Figure 3: Data structure for group update history.  
  
  

To facilitate a mobile computer to salvage many of its 
local cache contents without incurring high uplink costs, the 
server needs to maintain a more sophisti-cated data structure 
for the group update history. It maintains for each group the 
object update history of the past W broadcast intervals (W 

w), consisting of a list of object ids and their most recent 
update timestamps, and the most recent update time of the 
group. This group update history is maintained in group 

table[] (see Fig. 3 for its de nition). In ad-dition, it also 
maintains the number of distinct objects that were most 
recently updated between (T , W L) and (T ,w L) to speed up 
the group validity checking.    

As an example, Fig. 4 shows a snapshot of a group table 
entry, group table[1]. In Fig. 4, group 1 con-tains objects A; 

B; C; D; E; and F. A broadcast in-terval is 20 minutes, w = 3 
and W = 6. Object A was updated at 09:08 and object B was 
updated at 08:12. The server keeps track of the update 
history of the past 6 broadcast intervals. Thus, both objects  
A and B and their update timestamps are maintained in group 

table[1].uplist. It also shows that the most recent update to 
this group was at time 09:08. Since IR contains the update 
history of the past 3 broadcast intervals, the number of 
distinct objects that were most recently updated between (T 
,W L) and (T ,w L) is 1. Namely, group table[1].tot wW at the 
moment is 1 (the number of distinct objects most recently 
up-dated between 08:00 and 09:00 is  

1).   
For every update to objects, the server updates group 

table[]. As a continuing example, Fig. 5 shows the changes 
to group table[1] at time 10:19 after ob-ject A and E were 
updated at 10:02 and 10:16, respec-tively. The update 
timestamp of object A is changed to the most recent update 
time of 10:02 and a new pair (E, 10:16) is inserted into the 
update list pointed to by group table[1].uplist. Of course, the 
group update time is also changed to 10:16 to re ect the most 
recent update to the group.    

Each time the server broadcasts an invalidation re-port, it 
also updates group table[]. For every group, the server 
removes the pairs in group table[].uplist that have update 
times less than T , W L. This would eliminate any objects 
that were updated before T , W L, and limit the amount of 
history that the server must maintain under GCORE. In  

addition, the    
  

 update B  update A        08:12  09:08    time      

   
08:00 08:20 08:40 09:00   09:20 09:40 10:00     

  

  

  group_table[1]:  

time = 09:08; total_wW = 1; uplist-->(A, 09:08)-
->(B, 08:12)-->NULL;  

  
Group[1] = {A, B, C, D, E, F};  w = 3; W = 6  

  
  Current time = 10:00  

T = 10:00  
  

Figure 4: Example of a group table[].  
  
  

update B  update A  update A 
08:12  09:08  10:02  

time  
  
  

                                        

08:00   08:20    08:40  09:00   09:20  09:40    10:00   
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10:16  
update E  

group_table[1]:  

time = 10:16;  
total_wW = 1;  
uplist-->(E, 10:16)-->(A, 10:02)-->(B, 08:12)-->NULL;  

  
  

  

Group[1] = {A, B, C, D, E, F};  w = 3; W = 6  

Current time = 10:19  

T = 10:00  

Figure 5: Changes to group table[] due to an update.  
  
  

update B  update A  update A 
08:12  09:08  10:02  

time  
  
  

  
  

  

10:16  
update E  

group_table[1]:  

time = 10:16;  
total_wW = 0;  
uplist-->(E, 10:16)-->(A, 10:02)-->NULL;  

  
  

Group[1] = {A, B, C, D, E, F};  w = 3; W = 6  

Current time = 10:20 T 

= 10:20  

  

 

Figure 6: Changes to group table[] due to a new broad-cast.  

 

 

server also updates group table[].total wW, which keeps the 
number of distinct objects that were most recently updated 
between T , W L and T , w L. The maintenance of group 

table[].total wW is for a fast group validity checking. If no 
object was most recently updated during T , W L and T , w 

L and Tlb > (T , W L), it means if there are any ob-jects in the 
group updated since Tlb , their ids have been included in IR. 
Notice that in GCORE the cache va-lidity checking is done 
after the mobile computer rst invalidates its cache based on 
IR, the most recent in-validation report. As a result, when a 
just-woke-up mobile computer sends a group validity 
checking to the server, it can ensure that those recently 
updated hot data have already been  invalidated in the 
mobile computer's cache.  

Continuing the example of Fig. 4 and 5, we show the 
changes to group table[1] at time 10:20 when a new IR is 
broadcasted in Fig. 6. Object B is now discarded from the 
update history since group table[1] only keeps track of the 

update history between 08:20 and 10:20 now. Also, group 

table[1].tot wW becomes 0 now since object A has been again 
updated at 10:02. Thus, the number of distinct objects most 
recently up-dated between 08:20 and 09:20 is zero.    

The server checks the validity of a group by exam-ining 
whether or not all the objects updated since the mobile 
computer becomes disconnected have been in-cluded in the 
latest invalidation report IR. If yes, then the group can be 
retained by the mobile com-puter. Otherwise, the entire 
group is invalid. This can be achieved by rst checking if 
group table[].time < Tlb. If yes, the group is valid since the 
group is last updated before the mobile computer becomes 
disconnected. If not, the server further checks if group 

table[].total wW  equals to 0 and Tlb > (T ,  
W L). If yes, this group is also valid since the up-dated 
object ids are all included in IR. Otherwise (either group 

table[].tot wW is greater than zero or Tlb < (T , W L)), this 
group is invalid.  
  
  
3 Simulation model   
  
In order to evaluate the performance of GCORE, an 
eventdriven simulator was developed to model a server and a 
mobile computer. In the simulation model, we assumed that 
database objects are only updated in the server by transactions 
and queries are read-only and are processed in the mobile 
computer. If the referenced data objects are not cached in the 
mobile computer, it sends the requested object ids to the server 
and the server sends back the object data. The e ectiveness of 
caching is measured by the communication bandwidth 
requirement for query processing. This communication 
requirement includes the receiving of the broadcast in-
validation reports, the uplink communication for va-lidity 
checking and asking for missed objects, and the  
  

Notation    De nition (Default values)   
      

D    server database size (100,000 objects)   
B    mobile cache size (5000 objects)   

u     server transaction arrival rate, Poisson in  
terarrival time (0.01 jobs/sec)  

q     mobile query arrival rate, Poisson interar  
rival time (0.1 jobs/sec)  

U    mean objects updated by a transaction (5)   
Q    mean objects referenced by a query (20)   

   reference skew by transactions (90%-10%)   
G    group size (100 objects)   
w   

  
 window  for  broadcast  invalidation  (10   
intervals)  

W    update history maintained (60 intervals)   
L    length of a broadcast interval (20 seconds)   
O    object size (256 bytes)   
Oid    object id size (64 bits)   
Gid    group id size (64 bits)   

08:00   08:20    08:40  09:00   09:20  09:40    10:00   10:20   
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T   
  

 timestamp of the current broadcast invali  
dation report  

Tlb   
  

  

 the timestamp of the latest broadcast in  
validation report received by a mobile com-  
puter before it went to sleep  

Pdisc   
  

  

 conditional probability of a disconnection   
in the next broadcast interval given that a  
mobile computer is active now (0.2)  

Ldisc    mean disconnection length (200 seconds)   
  

Table 1: System and workload parameters.  
  
  
downlink communication for sending the data to the mobile 
computer. High bandwidth requirement means less e ective 
caching and more energy consumption.    

A total of D total objects are in the database. Of the D 
objects, portion of them are hot update set, while (1, ) 
portion of them are cold update set. Data in the hot update 
set are randomly chosen from the D objects. The number of 
objects updated by a trans-action is uniformly distributed 
between U=2 and 3U=2 objects, where U is the mean. Of the 
data objects up-dated by a transaction, fraction of them are 
from the hot update set, and the rest from the cold update 
set. Update transaction arrival is a Poisson process with 
  rate    u .  

In order to focus on the cache invalidation e ect, we assumed 
that a cache miss is resulted only from inval-idation. It does not 
result from a query referencing an object that is replaced by 
another object. In other words, we assumed that all the queries 
in a mobile com-puter reference a xed subset of objects that are 
ini-tially cached. The cache size is B objects. These B objects 
are randomly chosen from the D objects in the database. Some 
of the cached objects may be invali-dated because they have 
been updated by transactions in the server.  

The objects referenced by a query are  
randomly chosen from these B objects and the number of 
objects referenced by a query is uniformly distrib-uted  

 between Q=2 and 3Q=2, where Q is the mean. The probability 

of a mobile computer becoming dis- 

 connected in the next broadcast interval given that it  
is active now is denoted as Pdisc. The length of discon-nection  

 is uniformly distributed between Ldisc=2 and 3Ldisc=2, where 
Ldisc is the mean. When a mobile computer is active, query 
interarrival times are expo-nentially distributed with mean 
1= q seconds. Queries are batched in QL and are not 
processed until a mo-bile computer receives a broadcast 
invalidation report. We accumulated the communication 
costs for query processing in a mobile computer for a period 
of time (50,000 broadcast intervals), and then compute its 
av-erage bandwidth requirement. For the computation of 
communication costs, the size of an object id is Oid bits and 
the size of each object is O bytes. The size of a group id is 
Gid . In the simulations, we assumed that O = 256 bytes, Oid 

= 64 bits and Gid = 64 bits. The size of a timestamp is 256 
bits. Notation and its de nition for all the simulation 
parameters are summarized in Table 1. The default values 

used in the simulations, if not otherwise speci ed, are 
included in the parenthe  -ses.  

Note that broadcast invalidation requires communication 
bandwidth every L seconds for all schemes even when a 
mobile computer is disconnected. However, it consumes 
energy for a mobile computer only when it is active. For the 
no-checking scheme, the communi-cation costs for query 
processing can be rather high both for uplink and downlink 
costs resulted from cache misses, especially if the 
disconnection length is longer than the broadcast 
invalidation window. For all the caching schemes, there are 
uplink costs due to a mo-bile computer requesting missed 
objects in its cache. For the other checking schemes, the 
uplink costs for cache validity checking are added to the 
total band-width costs.  
  
  

4 Simulation results   
  
We compute the communication costs of a mobile com-puter, 
including the costs of receiving the broadcast invalidation 
reports, the uplink costs of checking the cache validity and 
requesting missed objects, and the downlink costs of the 
validity report and the data ob-jects due to cache misses. The 
bandwidth requirement is the average of the communication 
costs over 50,000 broadcast intervals. Since the bandwidth 
requirement would be smaller if the mobile computer is often 
dis-connected, we plotted the bandwidth requirement for 1000 
queries. By doing this, the true e ectiveness of caching is 
manifested in bandwidth requirement. Un-less otherwise speci 
ed, the default values for most of the simulations are provided 
in Table 1.  
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Figure 7: Impact of broadcast invalidation window size.  

  

4.1 Four schemes   
  
We examined the impact of w, relative to Ldisc , on the 
bandwidth requirement. Fig. 7 shows the total bandwidth 
requirement per 1000 queries for the four di erent schemes. In 
this experiment, the mobile com-puter was disconnected 
relatively infrequently, namely Pdisc = 0:1. (Sensitivity analysis 
on Pdisc will be pre-sented next.) The mean disconnection length 
Ldisc was 400 seconds, which is equivalent to 20 broadcast inter-
vals. Since disconnection  length was uniformly distrib-  
uted between Ldisc=2 and 3Ldisc=2, a mobile computer may  
power o for a period of between 10 and 30 broad- cast 
intervals. For GCORE and the simple grouping  schemes, 
the group size was 100 objects.  

Because the broadcast invalidation cost is propor-tional to 
the number of objects included in the inval-idation report, it 
increases as w increases for all four schemes. However, if w is 
greater than the disconnec-tion length, all cached objects can 
be validated with the invalidation report IR, and no checking is 
ever needed. Therefore, if w 30 broadcast intervals, all four 
schemes require exactly the same communication bandwidth. 
This is because the maximum disconnec-tion length is 30 
broadcast intervals. For the cases where w < 30 broadcast 
intervals, both GCORE and simple grouping require signi 
cantly less bandwidth than simple checking and no checking 
schemes. Obvi-ously, validity checking helps retain some of 
the cached objects and thus substantially reduces bandwidth re-
quirements. Even with a simple checking scheme where the 
uplink cost can be substantial, the overall cache ef fectiveness 
can still be improved.  

If the bene ts of retaining cached objects are not re-alized by 
queries, e.g., a mobile computer may be dis-connected most of 
the time, it may not pay o to per-form validity checking, 
especially for the simple check-ing scheme. Here, we examine 
the impact of Pdisc,  
requirement for query processing.  
  
  

the conditional probability of a mobile computer 
disconnected in the next broadcast interval given that it is 
active now. Fig. 8 shows the total bandwidth re-quirement 
for the four di erent caching schemes. For this experiment, 
w was 10 broadcast intervals (or 200 seconds) and Ldisc was 
400 seconds. Namely, a dis-connection can last for between 
200 seconds and 600 seconds. Thus, the rst invalidation 
report a mobile computer receives after a reconnection does 
not con-tain enough information for validating cached 
objects. It must either discard the entire cache, as in the case 
of no checking scheme, or check the  

 validity of cached objects with the server. As indicated from 
Fig. 8, as Pdisc increases the over-head of  

 cache validity checking starts to outweigh the  
bene t of retaining cached objects. This is particularly true for 
the case of simple checking, as it needs high uplink bandwidth 
to send all the object ids. In this gure, simple checking is bene 
cial only for the case of very small Pdisc. Fig. 8 clearly illustrates 
the impor-tance of reducing the uplink communication 
overhead for cache validity checking. Both GCORE and simple 
grouping have much smaller uplink costs, and as a re-sult can 
still be better than the no checking  

 scheme for  
a larger Pdisc . But, as a mobile computer is discon-nected  

 most of the time, it does not pay to check the  
validity of cached objects since they are not likely to be 
reused anyway. In such cases, it is better to just use the no 
checking scheme.  
  
4.2 GCORE and simple grouping   
  
For both simple grouping and GCORE, group size is an 
important design parameter. With a larger group size, less 
uplink bandwidth is needed. However, it be-comes more likely 
that the entire group or most of it may be invalidated since more 
objects in the group are  
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Figure 9: Impact of group size on bandwidth.  

  
  
likely to be updated. Fig. 9 shows the bandwidth requirements 
of GCORE and simple grouping for vari-ous group sizes and 
update rates. In general, as group size increases, the uplink cost 
decreases but the down-link cost increases. Thus, the total 
bandwidth rst de-creases and then increases as group size 
increases. For the cases with low update rates (such as those 
with u = 0:01 in Fig. 9), the advantage of GCORE over simple 
grouping increases as group size increases. How-ever, it may 
not be true for the cases with high update rates. This is because 
GCORE can retain the cold up-date set of a group only if the 
updated objects of the group are all captured in the most recent 
invalidation report. If a group contains a large number of 
objects and the update rate is high, then it is less likely that all 
the updated objects will be captured in IR.  
  
  
5 Summary   
  
We have presented an energy-e cient caching scheme, called 
grouping with cold update-set retention GCORE, that allows a 
mobile computer to disconnect for saving energy, but still 
retains most of the caching bene ts. An e cient implementation 
of GCORE was presented in the paper. It uses a simple data 
structure to facilitate the dynamic exclusion of recently updated 
objects (likely to belong to the hot update set) from a group so 
that the rest of the group (likely to belong to the cold update 
set) can be retained in the cache. Upon waking up, a mobile 
computer checks its cache validity with the server at a group 
level to save uplink costs. The server determines that a group 
is valid if all the recently updated objects have already been 
included in the most  recently broadcasted invalidation report.  

Simulations were conducted to evaluate the perfor-mance of 
GCORE. We compared GCORE with a no checking scheme, a 
simple checking scheme and a sim-  
ple grouping scheme. The results show that, compared with no 
checking and simple checking, both simple grouping and 
GCORE requires much less bandwidth for processing queries, 
particularly if a mobile computer is occasionally disconnected 
for a long period of time and most of the data objects are 
infrequently updated. Lower bandwidth requirement also 
consumes less en-ergy and thus more energy e cient.  
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