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ABSTRACT 

 In this paper, we have studied various properties of a  3 ,k k  structure 

manifold and its invariant submanifold, where k is positive integer. Under two 

different assumptions, the nature of induced structure  , has also been discussed. 
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1 Introduction 

  Let Vm be a C
 m-dimensional Riemannian manifold imbedded in a 

C
 n-dimensional Riemannian manifold Mn, where m<n. The imbedding 

being denoted by  

  : m nf V M  

  Let B be the mapping induced by f i.e. B=df  

     :df T V T M  

  Let T (V,M) be the set of all vectors tangent to the submanifold f(V). It 

is well known that  

     : ,B T V T V M  
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  Is an isomorphism. The set of all vectors normal to  f V  forms a 

vector bundle over  f V , which we shall denote by  ,N V M . We call 

 ,N V M  the normal bundle of 
mV . The vector bundle induced by f from 

 ,N V M  is denoted by  N V . We denote by    : ,C N V N V M the 

natural isomorphism and by  r

s V  the space of all C


 tensor fields of type 

 ,r s  associated with N (V). Thus    0 0

0 0V V  is the space of all C
 

functions defined on 
mV  while an element of  1

0 V  is a C
 vector field 

normal to 
mV  and an element of  1

0 V  is a C
 vector field tangential to 

mV . 

  Let X  and Y  be vector fields defined along  f V  and ,X Y  be the 

local extensions of X  and Y  respectively. Then ,X Y 
 

 is a vector field 

tangential to Mn and its restriction  ,X Y f V 
 

to  f V  is determined 

independently of the choice of these local extension X  and Y . Thus ,X Y  
 

is defined as 

(1.1)  , ,X Y X Y f V      
  

 Since B is an isomorphism 

(1.2)    , ,BX BY B X Y  for all  1

0,X Y V  

  Let G  be the Riemannain metric tensor of Mn, we define g and g* on 

Vm and N (V) respectively as  

(1.3)    1 2 1 2, , ,g X X G BX BX f  and 

(1.4)    *

1 2 1 2, ,g N N G CN CN  

  For all  1

1 2 0,X X V  and  1

1 2 0,N N V  
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  It can be verified that g and 
*g  are the induced metrics on Vm and N 

(V) respectively. 

  Let us suppose that nM  is a  2 ,k S S  structure manifold with 

structure tensor   of type (1,1) satisfying 

(1.5) 
3 0k k    

  Let L  and M  be the complementary distributions corresponding to 

the projection operators 

(1.6) 2 2,k kl m I      

 where I denotes the identity operator.  

  From (1.5) and (1.6), we have 

(1.7) (a) l m I   (b) 
2l l   (c) 

2m m  

(d) 0l m m l   

  Let lD  and mD  be the subspaces inherited by complementary 

projection operators l and m respectively. 

 We define 

    : , 0l pD X T V lX X mX     

    : , 0m pD X T V mX X lX     

 Thus  p l mT V D D   

 Also  : 0 mKer l X lX D    

   : 0 lKer m X mX D    
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 at each point p  of  f V . 

2. INVARIANT SUBMANIFOLD OF  3 ,k k  STRUCTURE MANIFOLD 

  We call 
mV  to be invariant submanifold of nM  if the tangent space 

  pT f V  of  f V  is invariant by the linear mapping   at each point p of 

 f V . Thus 

(2.1) BX B X  , for all  1

0 ,X V , and   being a (1,1) tensor field in 
mV . 

 Theorem (2.1): Let N  and N be the Nijenhuis tensors determined by   and 

  in nM  and 
mV respectively, then 

(2.2)    , , ,N BX BY BN X Y  for all  1

0,X Y V  

 Proof : We have, by using (1.2) and (2.1)  

(2.3)      2, , ,N BX BY BX BY BX BY     

    , ,BX BY BX BY      

 Simplifying the expression, we get (2.2), 

3. DISTRIBUTION M  NEVER BEING TANGENTIAL TO  f V   

 Theorem (3.1) if the distribution M  is never tangential to  f V , then 

(3.1)   0m BX     for all   1

0X V  

 and the induced structure   on 
mV  satisfies 

(3.2) 
2k I    
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 Proof : if possible   0m BX  . From (2.1) We get  

(3.3) 
2 2 ;k kBX B X   from (1.6) and (3.3) 

    2km BX I BX   

 
2kBX B X   

(3.4)   2km BX B X X   
 

  This relation shows that  m BX  is tangential to  f V  which  

contradicts the hypothesis. Thus  m BX = 0. Using this result in (3.4) and 

remembering that B is an isomorphism, We get 

(3.5) 
2k I    

 Theorem (3.2) Let M  be never tangential to  f V , then  

(3.6)  , 0
m
N BX BY   

 Proof : We have 

(3.7)      2, , ,
m
N BX BY m BX mBY m BX BY   

    , ,m mBX BY m BX mBY   

 Using (1.2), (1.7) (c) and (3.1), we get (3.6). 

 Theorem (3.3) Let M  be never tangential to  f V , then  

(3.8)  , 0
l
N BX BY   

 Proof : We have 
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(3.9)    2, , , ,
l
N BX BY l BX l BY l BX BY l l BX BY          

 ,l BX l BY     

 Using (1.2), (1.7) (a), (b) and (3.1) in (3.9); we get (3.8) 

 Theoren (3.4) Let M  be never tangential to  f V . Define  

(3.10)        , , , ,H X Y N X Y N mX Y N X mY    

  ,N mX mY  

 For all  1

0,X Y M , then 

(3.11)    , ,H BX BY BN X Y  

 Proof : Using ,X BX Y BY   and (2.2), (3.1) in (3.10) We get (3.11). 

4. DISTRIBUTION M  ALWAYS BEING TANGENTIAL TO  f V  

 Theorem (4.1) Let M  be always tangential to  f V , then  

(4.1) (a)  m BX Bm X   (b)   l BX Bl X  

 Proof : from (3.4), We get (4.1) (a). Also 

(4.2) 
2kl    

 
2klX X   

 (4.3) 
2kBlX B X   

 Using (2.1) in (4.3) 
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(4.4)  2 ,kBlX BX l BX    

 which is (4.1) (b). 

 Theorem (4.2) Let M be always tangential to  f V , then l and m satisfy 

(4.5) (a) l +m =I (b) lm= ml =0 (c) l2=l (d) m2 =m. 

 Proof : Using (1.7) and (4.1) We get the results. 

 Theorem (4.3) If M  is always tangential to  f V , then  

(4.6) 
3 0k k    

 Proof : From (2.1) 

(4.7) 
3 3k kBX B X    Using (1.5) in (4.7) 

 
3k kBX B X    

 
3k kB X B X    

 Or    3 0k k     which is (4.6) 

 Theorem (4.4) : If M  Is always tangential to  f V  then as in (3.10) 

(4.8)    , ,H BX BY BH X Y  

 Proof: from (3.10) we get 

(4.9)          , , , , ,H BX BY N BX BY N mBX BY N BX mBY N mBX mBY     

 Using (4.1) (a) and (2.2) in (4.9) we get (4.8). 
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