INVARIANT SUBMANIFOLD OF (3k,k) STRUCTURE MANIFOLD Lakhan Singh¹ and Shailendra Kumar Gautam²

¹Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.),India ²Eshan College of Engineering, Mathura(UP),India

ABSTRACT

In this paper, we have studied various properties of a (3k,k) structure manifold and its invariant submanifold, where *k* is positive integer. Under two different assumptions, the nature of induced structure ψ , has also been discussed.

Keywords : Invariant submanifold, Nijenhuis tensor, projection operators and complementary distributions.

1 Introduction

Let V^m be a C^{∞} m-dimensional Riemannian manifold imbedded in a C^{∞} n-dimensional Riemannian manifold M^n , where m < n. The imbedding being denoted by

 $f: V^m \longrightarrow M^n$

Let B be the mapping induced by f i.e. B=df

 $df: T(V) \longrightarrow T(M)$

Let T(V,M) be the set of all vectors tangent to the submanifold f(V). It is well known that

$$B: T(V) \longrightarrow T(V,M)$$

Is an isomorphism. The set of all vectors normal to f(V) forms a vector bundle over f(V), which we shall denote by N(V,M). We call N(V,M) the normal bundle of V^m . The vector bundle induced by f from N(V,M) is denoted by N(V). We denote by $C:N(V) \longrightarrow N(V,M)$ the natural isomorphism and by $\eta_s^r(V)$ the space of all C^∞ tensor fields of type (r,s) associated with N (V). Thus $\zeta_0^0(V) = \eta_0^0(V)$ is the space of all C^∞ functions defined on V^m while an element of $\eta_0^1(V)$ is a C^∞ vector field tangential to V^m

Let \overline{X} and \overline{Y} be vector fields defined along f(V) and \tilde{X}, \tilde{Y} be the local extensions of \overline{X} and \overline{Y} respectively. Then $[\tilde{X}, \tilde{Y}]$ is a vector field tangential to M^n and its restriction $[\tilde{X}, \tilde{Y}]/f(V)$ to f(V) is determined independently of the choice of these local extension \tilde{X} and \tilde{Y} . Thus $[\overline{X}, \overline{Y}]$ is defined as

(1.1) $\left[\bar{X}, \bar{Y}\right] = \left[\tilde{X}, \tilde{Y}\right] / f(V)$

Since B is an isomorphism

(1.2) [BX, BY] = B[X, Y] for all $X, Y \in \zeta_0^1(V)$

Let \overline{G} be the Riemannain metric tensor of M^n , we define g and g^* on V^m and N(V) respectively as

- (1.3) $g(X_1, X_2) = \tilde{G}(BX_1, BX_2) f$, and
- (1.4) $g^*(N_1, N_2) = \tilde{G}(CN_1, CN_2)$

For all $X_1, X_2 \in \zeta_0^1(V)$ and $N_1, N_2 \in \eta_0^1(V)$

Volume-2 | Issue-8 | August, 2016 | Paper-1

It can be verified that g and g^* are the induced metrics on V^m and N (V) respectively.

Let us suppose that M^n is a (2k+S,S) structure manifold with structure tensor ψ of type (1,1) satisfying

$$(1.5) \quad \tilde{\psi}^{3k} + \tilde{\psi}^k = 0$$

Let \tilde{L} and \tilde{M} be the complementary distributions corresponding to the projection operators

(1.6)
$$\tilde{l} = -\tilde{\psi}^{2k}$$
, $\tilde{m} = I + \tilde{\psi}^{2k}$
where I denotes the identity operator.
From (1.5) and (1.6), we have
(1.7) (a) $\tilde{l} + \tilde{m} = I$ (b) $\tilde{l}^2 = \tilde{l}$ (c) $\tilde{m}^2 = \tilde{m}$
(d) $\tilde{l} \ \tilde{m} = \tilde{m} \ \tilde{l} = 0$

Let D_l and D_m be the subspaces inherited by complementary projection operators l and m respectively.

We define

$$D_{l} = \left\{ X \in T_{p}(V) : lX = X, mX = 0 \right\}$$
$$D_{m} = \left\{ X \in T_{p}(V) : mX = X, lX = 0 \right\}$$

Thus $T_p(V) = D_l + D_m$

Also
$$Ker \ l = \{X : lX = 0\} = D_m$$

 $Ker \ m = \{X : mX = 0\} = D_l$

Volume-2 | Issue-8 | August,2016 | Paper-1

at each point p of f(V).

2. INVARIANT SUBMANIFOLD OF (3k,k) STRUCTURE MANIFOLD

We call V^m to be invariant submanifold of M^n if the tangent space $T^p(f(V))$ of f(V) is invariant by the linear mapping $\tilde{\psi}$ at each point p of f(V). Thus

(2.1) $\tilde{\psi}BX = B\psi X$, for all $X \in \zeta_0^1(V)$, and ψ being a (1,1) tensor field in V^m .

Theorem (2.1): Let \tilde{N} and N be the Nijenhuis tensors determined by $\tilde{\psi}$ and ψ in M^n and V^m respectively, then (2.2) $\tilde{N}(BX, BY) = BN(X, Y)$, for all $X, Y \in \zeta_0^1(V)$ Proof : We have, by using (1.2) and (2.1) (2.3) $\tilde{N}(BX, BY) = [\tilde{\psi}BX, \tilde{\psi}BY] + \tilde{\psi}^2[BX, BY]$ $-\tilde{\psi}[\tilde{\psi}BX, BY] - \tilde{\psi}[BX, \tilde{\psi}BY]$

Simplifying the expression, we get (2.2),

3. DISTRIBUTION \tilde{M} NEVER BEING TANGENTIAL TO f(V)

Theorem (3.1) if the distribution \tilde{M} is never tangential to f(V), then

(3.1) $\tilde{m}(BX) = 0$ for all $X \in \zeta_0^1(V)$

and the induced structure ψ on V^m satisfies

(3.2) $\psi^{2k} = -I$

Proof: if possible $\tilde{m}(BX) \neq 0$. From (2.1) We get

(3.3) $\tilde{\psi}^{2k}BX = B\psi^{2k}X$; from (1.6) and (3.3)

$$\tilde{m}(BX) = (I + \tilde{\psi}^{2k}) BX$$

$$= BX + B\psi^{2k} X$$

$$(3.4) \quad \tilde{m}(BX) = B\left[X + \psi^{2k}X\right]$$

This relation shows that $\tilde{m}(BX)$ is tangential to f(V) which contradicts the hypothesis. Thus $\tilde{m}(BX) = 0$. Using this result in (3.4) and remembering that *B* is an isomorphism, We get

(3.5)
$$\psi^{2k} = -l$$

Theorem (3.2) Let \tilde{M} be never tangential to f(V), then

$$(3.6) \quad \tilde{N}_{\tilde{m}}(BX, BY) = 0$$

Proof : We have

(3.7)
$$\tilde{N}_{\tilde{m}}(BX, BY) = [\tilde{m} BX, \tilde{m}BY] + \tilde{m}^{2}[BX, BY]$$

 $-\tilde{m}[\tilde{m}BX, BY] - \tilde{m}[BX, \tilde{m}BY]$

Using (1.2), (1.7) (c) and (3.1), we get (3.6).

Theorem (3.3) Let \tilde{M} be never tangential to f(V), then

$$(3.8) \quad \tilde{N}_{\tilde{l}}(BX, BY) = 0$$

Proof : We have

(3.9)
$$\tilde{N}_{\tilde{l}}(BX, BY) = [\tilde{l} BX, \tilde{l} BY] + \tilde{l}^{2}[BX, BY] - \tilde{l}[\tilde{l} BX, BY]$$

 $-\tilde{l}[BX, \tilde{l} BY]$

Using (1.2), (1.7) (a), (b) and (3.1) in (3.9); we get (3.8)

Theoren (3.4) Let \tilde{M} be never tangential to f(V). Define

$$(3.10) \quad \tilde{H}\left(\tilde{X},\tilde{Y}\right) = \tilde{N}\left(\tilde{X},\tilde{Y}\right) - \tilde{N}\left(\tilde{m}\tilde{X},\tilde{Y}\right) - \tilde{N}\left(\tilde{X},\tilde{m}\tilde{Y}\right) \\ + \tilde{N}\left(\tilde{m}\tilde{X},\tilde{m}\tilde{Y}\right)$$

For all $\tilde{X}, \tilde{Y} \in \zeta_0^1(M)$, then

$$(3.11) \ \widetilde{H}(BX,BY) = BN(X,Y)$$

Proof: Using $\tilde{X} = BX$, $\tilde{Y} = BY$ and (2.2), (3.1) in (3.10) We get (3.11).

4. DISTRIBUTION \tilde{M} ALWAYS BEING TANGENTIAL TO f(V)

Theorem (4.1) Let \tilde{M} be always tangential to f(V), then

(4.1) (a) $\tilde{m}(BX) = Bm X$ (b) $\tilde{l}(BX) = Bl X$

Proof : from (3.4), We get (4.1) (a). Also

 $(4.2) \quad l = -\psi^{2k}$

$$lX = -\psi^{2k} X$$

 $(4.3) \quad BlX = -B \psi^{2k} X$

Using (2.1) in (4.3)

$$(4.4) \quad BlX = -\tilde{\psi}^{2k} BX = \tilde{l} (BX),$$

which is (4.1) (b).

Theorem (4.2) Let \tilde{M} be always tangential to f(V), then *l* and *m* satisfy

(4.5) (a)
$$l + m = I$$
 (b) $lm = ml = 0$ (c) $l^2 = l$ (d) $m^2 = m$.

Proof : Using (1.7) and (4.1) We get the results.

Theorem (4.3) If \tilde{M} is always tangential to f(V), then

(4.6)
$$\psi^{3k} + \psi^{k} = 0$$

Proof : From (2.1)
(4.7) $\tilde{\psi}^{3k} BX = B \psi^{3k} X$ Using (1.5) in (4.7)
 $-\tilde{\psi}^{k} BX = B \psi^{3k} X$
 $-B\psi^{k} X = B \psi^{3k} X$
Or $\psi^{3k} + \psi^{k} = 0$ which is (4.6)

Theorem (4.4) : If \tilde{M} Is always tangential to f(V) then as in (3.10)

$$(4.8) \quad \tilde{H}(BX,BY) = BH(X,Y)$$

Proof: from (3.10) we get

(4.9)
$$\tilde{H}(BX,BY) = \tilde{N}(BX,BY) - \tilde{N}(\tilde{m}BX,BY) - \tilde{N}(BX,\tilde{m}BY) + \tilde{N}(\tilde{m}BX,\tilde{m}BY)$$

Using (4.1) (a) and (2.2) in (4.9) we get (4.8).

REFERENCES:

Endo Hiroshi

K. Yano

H.B. Pandey & A. Kumar:

R. Nivas & S. Yadav

Abhisek Singh,

& Sachin Khare

Ramesh Kumar Pandey

:

:

:

4.

5.

6.

7.

8.

- 1. A Bejancu : On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.
- 2. B. Prasad : Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
- 3. F. Careres : Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.

On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.

Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.

On a structure defined by a tensor field f of the type (1,1) satisfying f³+f=0. Tensor N.S., 14 (1963), 99-109.

On CR-structures and $F_{\lambda}(2\nu + 3, 2)$ - HSU structure satisfying $F^{2\nu+3} + \lambda^r F^2 = 0$, Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).

On horizontal and complete lifts of (1,1) tensor fields F satisfying the structure equation F(2k+S,S)=0. International Journal of Mathematics and soft computing. Vol. 6, No. 1 (2016), 143-152, ISSN 2249-3328