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Abstract : Let M be aright R—module. A right R—module N is called nonessential
principally M - injective (briefly, nonessential PM - injective) if, for each s S with
s(M) ¢® M, any R —homomorphism from s(M) to N can be extended to an

R —homomorphism from M toN. M is called nonessential principally quasi- injective
(briefly, nonessential PQ - injective) if, it is nonessential PM - injective. In this paper,
we give some characterizations and properties of nonessential PQ - injective modules.
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1. Introduction

Let R bearing. Aright R -module M is called principally injective
(or P -injective) [8], if every R -homomorphism from a principal right ideal of R to
M can be extended to an R -homomorphism from R to M. Equivalently, 1,1, (a) = Ma

for all ae R where | and rare left and right annihilators, respectively. In [9],
Nicholson, Park, and Yousif extended this notion of principally injective rings to the one
for modules. In [5], W. Junchao introduced the definition of Jcp -injective rings, a ring

R is called right Jcp -injective if foreach aeR\Z_, any R -homomorphism from aR

to R can be extended to an R -homomorphism from R to R. A right R -module M is
called almost mininjective [11] if, for any simple right ideal KR of R, there exists an
S-submodule X, of M such that I,(r;(m)) = Mk® X, as left S-modules. A ring

R is called right almost mininjective if R, is almost mininjective. In this note we

introduce the definition of nonessential PQ - injective modules and give some

characterizations and properties. Some important results which are known for P -
injective rings are hold for nonessential PQ - injective modules.

Throughout this paper, R will be an associative ring with identity and all
modules are unitary right R —modules. For right R —modules M and N, Hom, (M, N)

denotes the set of all R —homomorphisms from M to N and S=End, (M) denotes the
endomorphism ring of M. If X isasubset of M the right (resp. left) annihilator of X
in R (resp. S) is denoted by r, (X) (resp.l;(X)). By notation, Nc® M (N c* M) we
mean that N is a direct summand ( an essential submodule) of M. We denote the
singular submodule of M by Z(M).
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2. Nonessential PM - injective modules
Recall that a submodule K of aright R —module M is essential (or large) in M
if, every nonzero submodule Lof M, we have KNnL=0. Anelement meM is called

singular if r,(m) <® R. M is called nonsingular if it contains no nontrivial singular
element.

Definition 2.1. Let M be aright R —module. A right R —module N is called
nonessential principally M - injective (briefly, nonessential PM - injective) if, for each

seS with s(M) z° M, any R —homomorphism from s(M) to N can be extended to an
R —homomorphism from M toN..

F F F F
Example 2.2. Let R :(O Fj where F isafield, M; =R, and N, :(O Oj’ then
N is nonessential PM - injective.

, 0 F 00
Proof. Itis clear that only X, = 0 of X, = o F and X, =N are nonzero

nonessential endomorphism images of M. Let ¢: X, - N be an R —homomorphism.

01 01 X, X
Since e X,, there exists X,;,X,, €F suchthat ¢ S
0 0 0 0 0 O

Then o 01 B 0 1))(0 O R ST F 00 _ 0 Xy,
00 0 0))lo 1 0o o0)lo 1) 0 0)°
It follows that x,, =0.
~ ~(1 0 X, O ~
Define ¢:M — N by (p(( J):( 12 Oj' Itis clear that ¢ isan

01 0
R —homomorphism.

e 9148 06 305 90 36 )

This show that (f) is an extension of ¢ . By the similar proof of X,, we can show for
X, and itis clear for X,. Then N is nonessential PM - injective. a

Lemma 2.3. Let Mand N be aright R —modules. Then N is nonessential PM -
injective if and only if for each seS with s(M) &* M,

Hom, (M,N)s = {f e Hom,(M,N): f(Ker(s))=0 }.
Proof. Clearly, Hom,(M,N)s < {f e Hom (M, N): f(Ker(s))=0 }
Let f e Hom, (M, N) such that f(Ker(s))=0. Then there exists an R —homomorphism
¢:S(M) — N such that @s=f by Factor Theorem
because Ker(s) — Ker(f). Since N is nonessential PM - injective , there exists an
R —homomorphism t:M — N such that ¢ =tt where 1:5(M) — M is the inclusion
map. Hence f =ts and therefore f e Hom, (M, N)s.
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Conversely, let se S with s(M) z° M and ¢:s(M) — N be an
R —homomorphism. Then ¢s e Hom, (M, N) and ¢s(Ker(s)) =0. By assumption, we
have @s=us for some ueHom,(M,N). This shows that N is nonessential PM -
injective. O

Lemma 2.4.
(1) If N, (L<i<n) are nonessential PM - injective modules, then @7, N. is

nonessential PM - injective.
(2) Any direct summand of a nonessential PM - injective module is again
nonessential PM - injective.

(3) If seS with s(M)z®* M and s(M) is nonessential PM - injective, then

s(M)c® M.
Proof. (1) Itisenough to prove the result for n=2. Let se S with s(M) «* M and
¢:S(M) —> N, @ N, be an R—homomorphism. Since N, and N, are nonessential
PM - injective, there exists R —homomorphisms ¢,:M — N, and ¢,:M — N, such
that p,u=m,¢ and ¢,1=m,p where w, and =, are the projection maps from N, ® N,
to N, and N,, respectively, and 1:s(M)— M is the inclusion map. Put
O=1,0,+1,0,:M—> N, ®N,. Thusitisclearthat ¢ extends ¢.
(2) By definition.
(3) Since s(M) is nonessential PM - injective, there exists an R —homomorphism
¢®:M —s(M) such that e1=1,, where 1:s(M)— M is the inclusion map. Then by

[1, Lemma5.1], 1 is a split monomorphism, therefore s(M)c® M. O

Theorem 2.5. The following conditions are equivalent for a projective modules M.
(1) Every seS with s(M)z® M, s(M) is projective.

(2) Every factor module of a nonessential PM - injective module is nonessential PM -
Injective.

(3) Every factor module of an injective R —module is nonessential PM - injective.
Proof. (1)= (2) Let N be anonessential PM - injective module, X a submodule of

N, seS with s(M)z®* M, and ¢:s(M)— N/X bean R —homomorphism. Then by
(1), there exists an R —homomorphism ¢:s(M) — N such that ¢ =n¢ where

n:N — N/ X is the natural R —epimorphism. Since N is nonessential PM - injective,
there exists an R —homomorphism t: M — N which is an extension of ¢ to M. Then
nt is an extension of ¢ to M.

(2) = (3) is clear.

(3)= (1) Let seS with s(M)z*M and o:A — B an R —epimorphism, and let
¢@:S(M) — B be an R —homomorphism. Embed A in an injective module E [1, 18.6].
Let 6:B — A/Ker(h) be an R —isomorphism. Since E/Ker(a) is nonessential PM -
injective, there exists an R —homomorphism (f): M — E/Ker(a) such that oo = (Blz
where 1, : A/Ker(h) > E/Ker(h) and 1, :5(M) — M are the inclusion maps. Since M

IS projective, (Ap can be liftedto B:M — E. Let s(m) e s(M).
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Then o@(s(m)) =a+ Ker(a) for some a € A, so

B(s(m)) + Ker(a) =np(s(m)) = g(s(m)) = cp(s(m)) = a+ Ker (o) where
n:E — E/Ker(a) is the natural R —epimorphism. Hence B(s(m))—a e Ker(a) c A so
B(s(m)) € A. This shows that B(s(M)) — A. Therefore we have lifted o. O

3. Nonessential PQ - injective modules

Aright R—module M is called nonessential principally quasi- injective
(briefly, nonessential PQ - injective) if, it is nonessential PM - injective.

Lemma 3.1. Let M be aright R —module. Then the following conditions are
equivalent.
(1) M isnonessential PQ - injective.

(2) I;(Ker(s)) = Ss foreach seS with s(M) z* M.

(3) Ker(s) = Ker(t), s, teS and s(M)z* M  implies that St Ss.

4) I(Im(t)nKer(s)) = Is(Im(t) + Ss for s, teS with st(M) z® M.

Proof. (1)= (2) Clearly, Ss < I(Ker(s)) forall seS with s(M) z® M. Let

t el (Ker(s)) and define ¢:s(M) — t(M) by o(s(m)) =t(m) for every me M. Then
¢ 1s well-defined because Ker(s) < Ker(t). By (1), there exists an R —homomorphism
¢®:M — M such that ¢y, =1, where 1,:s(M) > M and , :t(M) - M are the
inclusion maps. Hence t=¢@s= s eSs.

(2) = (3) If Ker(s) = Ker(t), s, teS with s(M)z® M then

I;(Ker(t)) < Is(Ker(s)). Since St < I (Ker(t)) and by (2) I(Ker(s)) = Ss, sowe
have St — Ss.

()= (4) Clearly, I;(Im(t) + Ssc I (Im(t)~Ker(s)) for s, teS with st(M)z® M.
Let ¢ els(Im(t) nKer(s)). Then Ker(st) = Ker(opt), and so Set = Sst by (3) because
st(M) ® M. Thus ot =@st, €S so (¢—s) € I (Im(t)). It follows that

oe I (Im(t) + Ss.

(4)= () Let seS with s(M)z* M and ¢:s(M)— M be an R —homomorphism.
Then gs e l;(Ker(ps)) < Is(Ker(s)) =l;(Ker(s) nIm1) =l;(Im1)+Ss=Ss by (4)
because s1(M) z® M. Thus there exists an R —homomorphism ¢ €S is an extension of
¢ to M. O

Following [8], a right R —module M is called a duo module if every submodule
of M is fully invariant.

Theorem 3.2. Let M be a duo, nonessential PQ - injective module and s, teS with
s(M) ¢* M.

(1) If s(M) embeds into t(M), then Ssisanimage of St.

(2) If t(M) isanimage of s(M), then St can be embedded into Ss.

(3) If s(M)=t(M), then Ss=St.
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Proof. (1) Let f:s(M)— t(M) bean R—monomorphism. Since M is nonessential
PQ- injective, there exists an R —homomorphism f :M — M such that ftl =1,f where
1,:5(M) > M and , :t(M) — M are the inclusion maps. Let o:St — Ss defined by

o(ut) = ufs for every ueS. Since fs(M) c t(M), o iswell-defined. Itis clear that o
isan S—homomorphism. Since f
f(s(M)) cs(M) so fs(M) «° M. Since Ker(fs) = Ker(s), Ss = Sfs by Lemma 3.1. Then

s e Sfs c o(St).
(2) By the same notations as in (1), let f:s(M) — t(M) be an R —epimorphism.

sy 1S mMonicand M is a duo module,

Since M is nonessential PQ - injective, there exists an R —homomorphism f:Mo>M
such that fll =1,f.Let 6:St > Ss defined by o(ut) = ufs for every ueS. lItisclear

that o isan S—homomorphism. If ut e Ker(c), then 0=c(ut) = ufs = ufs. It follows

that ut =0.
(3) Follows from (1) and (2) O

Recall that a right R -module M is called C2 [6] if, every submodule of M
that is isomorphic to a direct summand of M is itself a direct summand of M. M is
called C3 if whenever N and K are direct summands of M with NNK =0 then
N@ K also a direct summand of M.

Theorem 3.3. Let M=mR, meM be a principal, nonessential PQ - injective module.

(D) If nR=e(mR) where neM and 1=e =g’ €S, then nR =g(mR), for some
g=g°€S.

(2) If e(mMR)Nf(MR)=0,1%2e=¢e’€S, 1=f=f*<cS, then e(mR)®f(mR) =g(mR),
Forsome g=g°€eS.

Proof. (1) If nR =e(mR) where neM and 1#ze=¢’ €S, then e(mR) is

nonessential PM - injective by Lemma 2.4 and hence nR is also nonessential PM -
injective. Since nR =e(mR), there exists an isomorphism o such that nR = ce(mR).

Since ce(M) z* M, then nR c® M Lemma 2.4.

(2) Let e(mMR)Nf(MR)=0, 1ze=e’€S, 1«f=f>eS. Then

(M) ® f (M) = e(M) ® (L—e)f (M). Since (1—e)f (M) =f (M),

(1-e)f (M) =g(M) forsome g°=geS by (1). Let h=e+g—ge, then h®>=h and
e(M)®f (M) =h(M). This prove (2). O

Theorem 3.4. Let M be a principal, nonessential PQ - injective, quasi-projective
module and s €S with s(M) «° M. Then the following conditions are equivalent.
(1) s(M) is a direct summand of M.

(2) s(M) is M —projective.

(3) s(M) is nonessential PQ - injective.

Proof. (1) = (2) It follows from the projectivity of M.
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(2) = (3) Since the sequence 0 — Ker(s) > M — s(M) — 0 splits, s(M) is isomorphic
to a direct summand of M so it is nonessential PM - injective by Theorem 3.3 and
Lemma 2.4.

(3) = (1) It follows from Lemma 2.4. O

Definition 3.5. Let M be aright R -module, S=End;(M). The module M is called

almost nonessential PQ - injective if, for each s e S with s(M) ¢® M, there exists a left
ideal X, of S suchthat 1(r,(s)) = Ss® X, as left S-modules.

Lemma 3.6. Let M be aright R -module, S=End,(M) and seS with s(M) z* M.
(1) If Homg(s(M),M) = S@Y as left S-modules, then I (Ker(s)) = Ss@® X as
left S-modules, where X={fs:f eY}.
(2) If Is(Ker(s)) = Ss@X forsome XcS asleft S-modules, then we have
Hom, (s(M),M) = S@Y asleft S-modules, where
Y = {f e Hom, (s(M), M) : fs e X}.
(3) Ss isadirect summand of I (Ker(s)) as left S-modules if and onlyif S isa
direct summand of Homg (s(M), M) as left S- modules.
Proof. Define 6:Homg(s(M), M) — I (Ker(s)) by 6(f) =fs for every
f e Homg (s(M), M) Itis obvious that 6 is an S-monomorphism. For t el (Ker(s))
define g:s(M) > M by g(s(m)) =t(m) for every me M. Since Ker(s) c Ker(t), g is
well-defined, so it is clear that g isan R -homomorphism. Then 6(g) =gs=t.
Therefore 6 isan S-isomorphism. Let fs € Ss. Since fs e | (Ker(s)), there exists
¢ € Hom, (s(M), M) such that 6(¢) =fs, so ¢s =fs. Define (T): M — M by
(B(m) =f(m) for every me M. Itis clear that (B isan R -homomorphism and is an
extension of ¢. Then fs= (Aps = e((;)). This shows that Ss < 6(S). The other inclusion is
clear. Then 6(S)=Ssand X =6(Y) ={fs:f € Y}. Then the Lemma follows. O

Theorem 3.7. The following conditions are equivalent:
(1) M is almost nonessential PQ - injective.

(2) There exists an indexed set {XS 'S eS} of left ideals of S with the property

that if s(M)z® M, seS§, then I;(Im(t) nKer(s)) = (X, :t),+Ss and

(X :t),NSscg(t) forall teS where (X :t),={geS:gteX,} if

st=0 and (X :t), =Is(Im(t)) if st=0.
Proof. (1)= (2) Let seS with s(M) z® M. Then there exists a left ideal X, of S
such that I5(Ker(s)) = Ss@ X, as left S-modules. Let teS. If st=0,then
Im(t) = Ker(s) so (2) follows. If st=0,thenany g el (Im(t)~Ker(s)) we have
Ker(st) = Ker(gt) and so gt € I;(Ker(gt)) < Is(Ker(st)) = Sst® X, as left S-modules
because st(M) ° M. Write gt =a(st)+h where aeS and heX,. Then
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(@-a(s)t=heX,, so g—ase (X, :t), It follows that ge (X, :t),+Ss. This shows
that I (Ker(s) nIm(t)) < (X, :t), +Ss. Conversely, it is clear that

Ss c Ig(Ker(s) nIm(t)). Let he (X, :t),. Then

ht e X, < Is(Ker(st)). If t(m) e Ker(s) ~Im(t), then st(m)=0and so ht(m)=0.
Hence h el (Ker(s) nIm(t)). This shows that (X, :t), < Is(Ker(st)). Therefore

I, (Ker(s) nIm(t)) = (X, : 1), +Ss. If Bse (X, :t),NSs, then Bste X, NSst=0. Hence
Bs € ().

(2) = (1) Let seS with s(M) ® M. Then there exists a left ideal X  of S such that
I (Ker(s)) =1 (Ker(s)nIm(2)) = (X,:1),+Ss and (X, :1),nSsc I (1) =0.

Note that (X, :1), = X,. Then (1) follows. (|
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