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ABSTRACT. Let EN(T; &', ®” ) denote the average number of real
roots of the random trigonometric polynomial

n
T=Ta(6, 0 = 28k (@)coskd
K=1

In the interval (@’ , ®” ). Clearly , T can have at most 2n zeros in the
interval ( 0, 2 ) .Assuming that ax(w )s to be mutually independent
identically distributed normal random variables , Dunnage has shown that
in the interval 0 <0 <21 all save a certain exceptional set of the

functions (Tn ( Bw )) have ﬂ+O(nl%3(logn)%3) zeros when n is

V3

large. We consider the same family of trigonometric polynomials and use
the Kac rice formula for the expectation of the number of real roots
and obtain that

2n

EN(T; 0,2m)~
J6

+ O(logn)

This result is better than that of Dunnage since our constant is (1/32)
Times his constant and our error term is smaller . the proof is based
on the convergence of an integral of which an asymptotic estimation is
obtained .
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1 . Introduction

Let N(T;®,®”) be the number of real zeros of trigonometric

n
polynomial T=T, (o, w)= ;aK (a))JK coskd (1)

In the interval (@', ®” ) where the coefficients ax(w) are mutually
independent random variables identically distributed according to the
normal law ; bk=kP are positive constants and when multiple zeros are
counted only once.Let EN(T; @, ®”) denote the expectation of N (

T; & ,®"). Obviously, T, (®, w)can have at most 2n most zeros in
the interval (0, 21 ).Dunnage [1] has shown that in the interval 0 <6 <
2 all save a certain exceptional set of the functions Ta( 6, w ) have

% + O(nlyﬂ(log n)%3)

zeros when n is large . The measure of the exceptional set does not
exceed ( logn )?* . subsequently ,Das[2] and Qualls [ 3] have obtained
similar results. In this note our purpose is to show that it is possible to
obtain a still lower estimate for the expectation of the number of real
roots of (1) by using the method of Loggan & shepp [4]. We show that
2n
J6
This result is better than that of Dunnage since our constant is( 1 /72)
times his constant and our error term is smaller.

EN(T; 0,2m) ~ +O(log n)

2 . The Approximation for EN(T; 0, 2m)

Let L(n) be a positive-valued function of n such that L(n) and n/ L(n)
both approach infinity with n.We take e=L(n)/n throughout.

Outside a small exceptional set of w, Tn( 6 ,w ) has a
negligible number of zeros in each of the intervals (0, €) ,( -€, TT+€) and
(211-€,21M). By periodicity , of zeros in each of intervals (0, €) and (21-
€,2m) is the same as number in (-€,€). We shall use the following
lemma , which is due to Das [2] . Lemma. The probability that Tn( 8 ,w) has
more than 1+ (2/log 2)(logn+2ne) Zeros in w-€< 0 < w+e does not
exceed 2 exp(-ne) .This lemma is due to Das[2], in the special case
Dn=)bn = n.The expected number of zeros of T in the interval (¢’ , ®”)
is given by the Kac_Rice formula
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o )
N(T;CD’,GD”):jdej‘n‘p(o’n)dn (2)

—¢' —o0
Where the probability density p(cf,n) T=¢ and T’=n is given by the
Fourier inversion formula

p(£m) - (2%)2? [exp(-iy—im)oly, 2)dye

—00 —00

¢(y,z)= E{exp(iTy+iT'Z)} being the characteristic function of the
combined variable (T, T ). Inour case ,we have

T_Za )coské T,:—Zn:kaK (w)sin ko
K=1

#(y,z)= exp{— Zn:(y coskd — zk sin k@)z}

K=1

n

p(0,77)= (21}[)2 sz_zexp(l— inz)exp{— > (ycoskd — zk sin ko)’ }dy

K=1

—00

for €>0,

[liool- <lnplo.n)n =Re i [lesp(-< rikin o

Iexp 7z exp{ Zn: ycos@—zksin k@)z}dy
1
LT 1
-ne HZ-[C L{ —iz)}’ e+|z)}

xexp{—zn:(y coskd — zk sin kH)z}dy (3)

1

where Re stands for the real part.

Here , if we allow cosk® , ksink® to be arbitrary , that is we take
each of them to be constant in k ,then the probability density p(¢&, n)
Of &=T(06)=AXand n=T'(0)=BX, say, degenerates and we get from

(3) the following identity , valid for non-zero A and B which can be
chosen suitably .
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00

0 =Reyris TdZ_f {(e—liz)ZJr : z}exp{—(Ay-Bz)z}dy @)

(e +iz)

Subtracting (4) from (3) we get

T‘”‘ exp(—eln])p(0,7)dn
Tdz | 1
a J;odz'[o{ (e -iz)’ (e +iz)2}
1 ¢ % 1 1
) Reﬁ_‘[odz_'[o Z{(e -iz)f ' (e +iz)2}

X {exp(—Gzz)— exp(—sz)}du (5)

by transforming the integrals puttingy =-uz or y=uz and denoting
2

G= Zn:(u coskd +ksinkd)
-

And H=( Au + B )2
Now using the identity (Logan and shepp[4], for a=2),

I{exp )—exp(—Gzz)}% = %Iog(G/H)
0
In the limit as €—0 we obtain from (5) that

Z(u cosk® + ksin k@)

K=1 du (6)
(Au + B)?

(o)

_TIUID(Q 77)0'77—

The double integral appearing in (5) is dominated by a decreasing
exponential function. So the involved integrals are uniformly convergent
on any interval. Since the integral on the right side of (6 ) converges,
we conclude that both the passage to the limit by letting ¢—0 and the
subsequent change of the order of integration to produce the equation (
6) are justified.
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3. Estimation of the integral of equation (6)

In this section we obtain an asymptotic estimation for the integral

. Zn:(u cosk® + ksin k@)?

| = | logs &= du
_jw d (Au +B)?

Where A and B are fixed non-zero real numbers . this integral exists
in general as a principal value i.e.

lim * C
J' .., if A= cos2ke
R—> 0 *p K=1
n n
Let B2 = k2sin2k6 And C?= k cosk® sink®
K=1 K=1

As in Das[ 2 ,pp.727] we have for
, 1 1
A :§{1+O(1/Iog n)}n=§Sn

B* = %{1+ O(1/logn)in® = %Sn3

mZ
d C? =0l(n?/logn)= = tant
an ( g ) logn , (B =constant ),
Taking L(n)=logn.
We have always by Cauchy’s inequality, AB = C2 In what
follows we will assume that AB > C2 This happens if 6 does not take

values from the set {0, T, 2m,... } . In fact
2.4 2 2.,~4
pegz_2ct =310 20 L ST peps (7)
12 S?(logn) 12
So that
. > (ucosk® + ksin k@)?
Il = | logs = du
L J (Au+B)
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A%u? + B* —2u?A2?B?

_ Tlog{(Azuz +B2) —4u2C* }du
(0]

A*u? + B* +2u®A”*B?
A*u® +B* —2u®A®B*?

IN
ot=—3
o
Q
f_/;\

}d u by (7)

=1, say 8)

|
ot—38

Iog{1+ X}du , writing x = (2u2A2B2) / (A%u4 + B4

1—x
-%
4X } du

1+ x2?)

{~log(l— z)}du , putting z=4x / (1+x2) .

|
N ow——38
O =8 3
Q
—
[
|

now x—0*" as u—0 or «.But x>¢>0,if eA%u? - 2u2A2B2+¢B4 <0,
which occurs for all u in the interval (d1{O(n?)/¢e}—-d2) where di,
d2 are functions of ¢ tending to zero as €—0. Thus for all u in the

interval (0, ~ ) we can safely assume that ¢ =1/n,and x={1/L(n)},
where n is tending to infinity .

Thus
X
I'> 2| ———=du
£@+xf
“2f - )
2 2 A2D2
[ ey
L(n)+1] ¢ A*u®+B
2
4B 1 T v2
A{ L(n)+1 -([v4+1dv
1 2 2I'In
_{1_ L(n)+1} NG (9)
Again
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1 > 2I'n
:{1_ L(n)+1} /6 (10)

now from (9)and (10) I~ (11)

And from (8) and (11) | ~ (12)

NG

4 EN(T; @ ,9”)
From (2), (6) and (12),we obtain EN(T; @ ,®”)=

(@"—d')n

J6

In view of our choice of A,Band C

EN(T;m+e,2m-€)=EN(T;¢e,m-€)
Again , by the lemma, we have
EN(T;0,e)+EN(T;m-¢€,m+e)+EN(T;2m-¢, 21)

=EN(T;m+e,2me) < 2{1+(2/log2)(logn+2ne)}
Now choosing e =(logn)/n, the desired result follows .

References

1. Dunnage, J.E.A. The number of real zeros of a random
trigonometric Polynomial, Proc. London Math. Soc. (3) 16
(1966)53-84.

2. Das M.K. and Bhatt, S.S. Real roots of random harmonic
equations, Indian Journal of pure and Applied Mathematics, 13
(1982), 411-420.

3. Quialls, C. On the average number of zeros of stationary Gaussian
random trigonometric polynomial, Jour. London Math. Soc. 2
(1970), 216-220.

4. Logan, B.F. and Shepp, L.A Real zeros of random Polynomials
(1), Proc. London Math. Soc. (Third Series) 18 (1968), 308-314.

Volume-2 | Issue-1 | January,2016 | Paper-2 16





