

 A Dual Bi-directional Heuristic Development Framework

Stanley Murairwa

Abstract

The research designs a multi-start heuristic framework. The heuristic development approach

increases the speed of convergence of heuristics to high quality optimum solutions. The multi-

start heuristic named the dual bi-directional (DBD) heuristic searches for the global optimum

solution in four concurrent directions with a pair search starting from both the beginning and

ending nodes. The search terminates when the four optimum tours connect to form an optimum

round tour of all the search space nodes. Then, the DBD heuristic starts to improve the found

optimum round tour in a unidirectional approach using a global search metaheuristic. The multi-

start heuristic framework decreases the non-convergence of the bi-directional approach by

introducing the unidirectional heuristic to improve the multi-start heuristic constructed optimum

round tour. The development approach will allow the convergence of the bi-directional heuristic.

Keywords: Dual bi-directional heuristic, Heuristic, Global Optimum Solution (GOS), bi-

directional heuristic, Optimum solution, Multi-start heuristic

1.0 Introduction

The research proposes a multi-start search framework named the Dual Bi-Directional (DBD)

heuristic framework for NP-complete symmetric travelling salesperson problems. The

development is a modification of the Greedy Randomised Adaptive Search Procedure (GRASP)

by Hart and Shogan (1987) and A* algorithm by Hart et al. (1968). The multi-start search

development framework also considered the features of the modifications by de Champeaux and

Sint (1977), Kaindl et al. (1999) and Toptsis et al. (2009). The article’s main ideas are to reduce

the complexity of the NP-complete real life problems and improve the convergence rate and

quality of the feasible solutions by implementing a four concurrent search technique. The

research by Toptsis et al. (2009) provides evidence that the DBD heuristic is faster than the bi-

directional algorithm. While the effort of this article is limited to the dual bi-directional

procedure as the name implies, the development concept can be extended to any Multi-start

heuristic. Therefore, the objective of this research is to develop a dual bi-directional heuristic

framework that is capable of increasing the speed of convergence of heuristics to high quality

optimum solutions (if not the global optimum solution) within few searching iterations.

2.0 Literature review

The heuristic search algorithms can be classified into two types, namely, unidirectional and bi-

directional types (de Chapeaux and Sint, 1977; Toptsis et al., 2009). In the unidirectional type

(for example Hart et al., 1968) there is only one-direction type of process emanating from the

source node A and seeking the goal node Z. On the other hand, the bi-directional type (for

example Pohl, 1971; de Chapeaux, 1983; Nelson and Toptsis, 1991; 1992) incorporates two

types of processes; one forward type search process from A to Z and one reverse type search

 Africa University, Faculty of Management and Administration, Box 1320, Mutare, Zimbabwe

Email: murairwas@africau.edu

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 17

mailto:murairwas@africau.edu

process from Z to A. The best-known bi-directional algorithms in Operations Research are by

Dijkstra (1959), Bellman (1958) and Ford (1956) while in Artificial Intelligence, it is the A*

algorithm by Hart et al. (1968). However, Pijls and Post (2008) wrote that the most efficient

algorithm is the bi-directional A* which utilises a balanced heuristic as demonstrated by Ikedah

et al. (1994), Goldberg and Harrelson (2005) and Klunder and Post (2006).

The DBD heuristic is a modification of the A* algorithm by Hart et al. (1968) and its

refinements by Dechter and Pearl (1985) and de Champeaux and Sint (1977). Pijls and Post

(2008) proposed an Algorithm 1 (which is akin to the A* algorithm) with the code running

simultaneously on both sides. Toptsis et al. (2009) suggested a guided parallel bi-directional

algorithm which the researchers proved to be converging faster than the A* algorithm of Hart et

al. (1968). de Champeaux and Sint (1977) refined the bi-directional search of Pohl (1969; 1971)

and produced an improved bi-directional heuristic search algorithm. Jensen et al. (2002)

proposed a combination of the A* (Hart et al., 1968) and Binary Decision Diagram (Bryant,

1986) and produced a Set A* algorithm. Hansen and Zhou (2007) demonstrated how to convert

the A* algorithm to find a sequence of improved solutions and converged to the optimum

solution. The concept by Hansen and Zhou (2007) was first proposed by Harris (1974) with a

bandwidth heuristic search that is related to the weighted heuristic search.

The Perimeter Search algorithm (also known as the bi-directional search) by Dillenburg and

Nelson (1993), unlike other bi-directional search algorithms, was developed to avoid some of the

pitfalls of attempting to do the two searches simultaneously. Dillenburg and Nelson (1993) stated

that the initial best-case scenario for the bi-directional heuristic path algorithm (BHPA) (Pohl,

1971) was for the two searches to meet in the middle. This would reduce an O(𝑏𝑑) search into

O(𝑏
𝑑

2) searches (Dillenburg and Nelson, 1993). However, the two searches do not meet at the

midpoint. The meet at the midpoint was eliminated in an improved bi-directional heuristic search

by de Champeaux and Sint (1977). Politowski and Pohl (1984) proposed a search switching bi-

directional search until the two tours meet. Dillenburg and Nelson (1993) stated that a recent

development in bi-directional search algorithms was the BS* algorithm (Kwa, 1989) derived

from Pohl’s BHPA algorithm with refinements added to eliminate excessive node expansions.

Goldberg and Harrelson (2005) provide a list of proposed refinements of the A* algorithm. Holte

(2009) noted that the A* algorithm does not always converge to an optimum after meeting but

can do so if it continues to search in order to find the optimum solution. Dai & Goldsmith (2007)

discovered that the bi-directional heuristic search algorithms outperform unidirectional heuristic

search algorithms. Kaindl et al. (1999) believes that the traditional heuristics run out of space

during the search even for problem instances of moderate size.

2.1 Research gap

There are efforts by researchers and practitioners such as Toptsis et al. (2009) and Hansen and

Zhou (2007) to improve the speed of heuristics’ convergence to high quality optimum solutions

if not the global optimum solution within a few searching iterations. Dai and Goldsmith (2007)

discovered that the bi-directional heuristics were faster than the unidirectional heuristics. The

traditional heuristics get chocked during the search even for moderate problem instances (Kaindl

et al., 1999). The researchers are trying to push heuristics to find the global optimum solution

within a few searching iterations. The question that arises is “How can the bi-directional

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 18

framework be improved to increase the speed of heuristics’ convergence to high quality optimum

solutions (if not the global optimum solution) within a few searching iterations?”

3.0 The DBD heuristic

3.1 DBD heuristic mathematical notation

This section presents the mathematical notation used to develop the DBD heuristic framework.

Suppose a Travelling Salesperson Problem (TSP) instance of size n is considered, the following

variables are defined:

 n is the sample size of the TSP instance;

 𝜉 is the search space;

 𝑎 (𝑎1, 𝑎2) is the start node with 𝑎1 and 𝑎2 starting points;

 𝑧 (𝑧1, 𝑧2) is the end node with 𝑧1 and 𝑧2 starting points;

 v, x, y and w are some of the nodes between a and z nodes;

 𝑑1 is the collection of nodes reached from a to z with known 𝑓𝑑1
(𝑎, 𝑧) value;

 𝑑2 is the collection of nodes reached from z to a with known 𝑓𝑑2
(𝑧, 𝑎) value;

 𝐴1 is the collection of nodes reached so far from 𝑎1 towards w with known 𝑓𝑎1
 value;

 𝐴2 is the collection of nodes reached so far from 𝑎2 towards v with known 𝑓𝑎2
 value;

 𝑍1 is the collection of nodes reached so far from 𝑧1 towards w with known 𝑓𝑧1
 value;

 𝑍2 is the collection of nodes reached so far from 𝑧2 towards v with known 𝑓𝑧2
 value;

 �̅�1 is the collection of nodes not in 𝐴1 but can minimise the tour in 𝐴1;

 �̅�2 is the collection of nodes not in 𝐴2 but can minimise the tour in 𝐴2;

 �̅�1 is the collection of nodes not in 𝑍1 but can minimise the tour in 𝑍1;

 �̅�2 is the collection of nodes not in 𝑍2 but can minimise the tour in 𝑍2;

 𝑑(𝑥, 𝑦) is the minimum distance between node x and node y;

 𝑑(𝑥, 𝑦) is an estimator of the distance between x and y with 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

 𝑑𝑎1
(𝑦) is the minimum distance between 𝑎1 and y for 𝑦 ∈ 𝐴1 ∪ �̅�1 with path in 𝐴1 ∪ �̅�1;

 𝑑𝑎2
(𝑦) is the minimum distance between 𝑎2 and y for 𝑦 ∈ 𝐴2 ∪ �̅�2 with path in 𝐴2 ∪ �̅�2;

 𝑑𝑧1
(𝑦) is the minimum distance between 𝑧1 and y for 𝑦 ∈ 𝑍1 ∪ �̅�1 with path in 𝑍1 ∪ �̅�1;

 𝑑𝑧2
(𝑦) is the minimum distance between 𝑧1 and y for 𝑦 ∈ 𝑍2 ∪ �̅�𝑧 with path in 𝑍2 ∪ �̅�2;

 𝐷𝑎1
(𝑤) = min

𝑦∈𝑍1

{𝑑(𝑤, 𝑦) + 𝑑𝑧1
(𝑦)};

 𝐷𝑎2
(𝑣) = min

𝑦∈𝑍2

{𝑑(𝑣, 𝑦) + 𝑑𝑧2
(𝑦)};

 𝐷𝑧1
(𝑤) = min

𝑦∈�̅�1

{𝑑(𝑤, 𝑦) + 𝑑𝑎1
(𝑦)};

 𝐷𝑧2
(𝑣) = min

𝑦∈�̅�2

{𝑑(𝑣, 𝑦) + 𝑑𝑎2
(𝑦)};

 𝑓𝑎1
(𝑥) = 𝑑𝑎1

(𝑥) + 𝐷𝑎1
(𝑥);

 𝑓𝑎2
(𝑥) = 𝑑𝑎2

(𝑥) + 𝐷𝑎2
(𝑥);

 𝑓𝑧1
(𝑥) = 𝑑𝑧1

(𝑥) + 𝐷𝑧1
(𝑥);

 𝑓𝑧2
(𝑥) = 𝑑𝑧2

(𝑥) + 𝐷𝑧2
(𝑥);

 𝛾(𝑥)is the finite set of nodes obtained by applicable operators on x;

 𝛾−1(𝑥) is like 𝛾(𝑥) but with inverse operators instead and

 𝑙(𝑗, 𝑥) is the edge length between j and x.

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 19

Search

space

w

v

𝑓𝑎1

𝑓𝑎2
 𝑓𝑧2

𝑓𝑧1

w

v

𝑓𝑎1

𝑓𝑎2
 𝑓𝑧2

𝑓𝑧1
 𝑎1

𝑧2 𝑎2

𝑧1

3.2 Basic concepts

The DBD heuristic, which is in two phases, increases the chances of converging to the global

optimal solution through its transition from dual bi-directional to unidirectional approach. The

two phases just like the GRASP (Hart and Shogan, 1987) are the construction and improvement

phases. The latter can be done by a local search heuristic such as the 𝜆-Opt procedure {2-Opt

(Flood, 1956; Croes, 1958) or 3-Opt (Bock, 1958)} or a global search heuristic such as Genetic

Algorithm (Bagley, 1967; Holland, 1975), Tabu Search (Glover, 1990; 1989), Ant Colony

(Dorigo, Maniezzo and Colorni, 1991) or Simulated Annealing (Metropolis, Rosenbluth,

Rosenbluth, Teller and Teller, 1958). However, the construction phase is the dual bi-directional

approach while the improvement phase is the unidirectional approach. Unlike the other bi-

directional search algorithms, the DBD heuristic is executed in four (𝑎1, 𝑎2, 𝑧1, 𝑧2) concurrent

searches. As described by Toptsis et al. (2009) in parallel bi-directional algorithm, the DBD

heuristic divides the search space into four areas and generates four optimum tours that are

connected together to form an optimum round tour. The optimum round tour is then improved by

the unidirectional algorithm in the improvement phase to enhance its quality.

The DBD heuristic locates the starting node a (with 𝑎1 and 𝑎2 starting points) and ending node z

(with 𝑧1 and 𝑧2 starting points) in the search space. The 𝑎 and 𝑧 should be the beginning and

ending extreme nodes in the search space. The search space is divided into four searchable areas.

Suppose 𝑤 and 𝑣 are the meeting nodes in the search space as presented in Figure 1. The two

meeting nodes should not necessarily be at the centre of the search space. Then, the two forward

tours are (𝑎1, 𝑤) and (𝑎2, 𝑣) while the backward tours are (𝑧1, 𝑤) and (𝑧2, 𝑣). The four optimum

tours are constructed simultaneously and this means that the algorithm runs concurrently on both

nodes. The DBD heuristic concept is depicted in Figure 1.

Figure 1: The DBD heuristic concept

Figure 1 shows that the DBD heuristic starts searching concurrently in four directions towards

the centre with a pair search starting at both the beginning and ending nodes. Thus, the minimum

distance function is given by:

𝑓𝑑(𝜏) = 𝑓𝑑1
(𝑎, 𝑧) + 𝑓𝑑2

(𝑧, 𝑎),…………………………………………………………………..(1)

where 𝑓𝑑1
(𝑎, 𝑧) = 𝑓𝑎1

(𝑎1, 𝑤) + 𝑓𝑧1
(𝑧1, 𝑤) and 𝑓𝑑2

(𝑧, 𝑎) = 𝑓𝑧2
(𝑧2, 𝑣) + 𝑓𝑎2

(𝑎2, 𝑣). The addition

of the jth node to a1or a2 or z1 or z2 from the search space ξ is determined by the evaluation

function:

a 𝑧 𝑎

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 20

Min
𝑗∈ξ

{𝑓𝑎1
(𝑎1, 𝑗); 𝑓𝑎2

(𝑎2, 𝑗); 𝑓𝑧1
(𝑧1, 𝑗); 𝑓𝑧2

(𝑧2, 𝑗)} , … … … … … … … … … … … … … … … … … … … . . (2)

The ties are broken by considering the next minimising node in the search space. The DBD

algorithm terminates the construction of the tour when the four optimum tours meet at 𝑤 and 𝑣

to form an optimum round tour. Instantly, the unidirectional algorithm starts to improve the

found optimum round tour in a unidirectional approach. The research recommends that the

global search metaheuristic be employed to improve the found optimum round tour in order to

avoid the challenges that are associated with most local search heuristics. Kaindl et al. (1999)

affirmed that switching from bi-directional to unidirectional helps to prove the optimality of the

solutions found. The unidirectional algorithm terminates the improvement of the round tour

when the termination criterion is satisfied.

3.3 DBD heuristic conditions

The following conditions apply for the DBD heuristic:

a) Each of the starting nodes should:

i) have memory to store search signals and

ii) clearly be marked for identification.

b) The coordinating point (tabu list) stores the visited nodes.

c) The DBD heuristic terminates twice during the search for the global optimum solution. The

termination conditions are:

i) The DBD algorithm terminates the construction of the round tour when the four optimum

tours meet at v and w in the search space to form an optimum round tour with all the

nodes of the search space connected.

ii) The unidirectional algorithm terminates the improvement of the optimum round tour

when it can no longer be improved in a fixed number of consecutive iterations.

3.4 DBD heuristic general framework

Step 1: Defining the search space: The DBD algorithm detects all the TSP instance nodes in the

search space and identifies the initial node (𝜏0) and end node (𝜏𝑛). It should be noted that

(𝜏0) and (𝜏𝑛) are the two extreme nodes 𝑎 and 𝑧 respectively in the search space.

Step 2: Allocation of two paired makers (tokens): each of the two nodes (𝑎, 𝑧) is allocated two

different tokens.

Step 3: Initialisation: each node releases the two different tokens simultaneously. The tours are

constructed towards the centre of the search space by a heuristic procedure. For 𝑅 = 1,

the algorithm generates the initial solution through random or construction. For 𝑅 > 1,

the algorithm retains the immediate past run tours as the starting tours if the tour

generated is of less quality to the previous run solution.

Step 4: Optimum round tour improvement: the unidirectional algorithm is applied to improve the

quality of the found optimum round tour.

Step 5: Terminating criteria: the DBD heuristic terminates with an optimum solution when the

stopping criterion for the unidirectional algorithm is satisfied.

3.5 DBD Algorithm

1. Identify the starting node 𝑎(𝑎1, 𝑎2) and ending node 𝑧(𝑧1, 𝑧2) and divide the search space

into four searchable areas as shown in Figure 1.

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 21

2. Put 𝑎1 in �̅�1 and 𝑧1 in �̅�1 with 𝑓𝑎1
(𝑎1): = 𝑓𝑧1

(𝑧1): =𝑑1(𝑎1, 𝑧1) and 𝑎2 in �̅�2 and 𝑧2 in �̅�2

with 𝑓𝑎2
(𝑎2): = 𝑓𝑧2

(𝑧2): = 𝑑2(𝑎2, 𝑧2). Delete 𝑎1, 𝑎2, 𝑧1 and 𝑧2 from 𝐴1, 𝐴2, 𝑍1 and 𝑍2

respectively.

3. If �̅�1 ∪ �̅�2 ∪ �̅�1 ∪ �̅�2 ≠ ∅, proceed to step 4; otherwise stop without a solution.

4.1 Select w in �̅�1 with 𝑓𝑎1
(𝑤) = min

𝑦11∈ �̅�1

𝑓𝑎1
(𝑦11), remove w from �̅�1 and put w in 𝐴1, let

descendants (w) : = 𝛾(𝑤).

4.2 Select v in �̅�2 with 𝑓𝑎2
(𝑣) = min

𝑦12∈ �̅�2

𝑓𝑎2
(𝑦12), remove v from �̅�2 and put v in 𝐴2, let

descendants (v) : = 𝛾(𝑣).

4.3 Select w in �̅�1 with 𝑓𝑧1
(𝑤) = min

𝑦11∈ 𝑍1

𝑓𝑧1
(𝑦11), remove w from �̅�1 and put w in 𝑍1, let

descendants (w) : = 𝛾−1(𝑤).

4.4 Select v in �̅�2 with 𝑓𝑧2
(𝑣) = min

𝑦12∈ �̅�2

𝑓𝑧2
(𝑦12), remove v from �̅�2 and put v in 𝑍2, let

descendants (v) : = 𝛾−1(𝑣).

5. If 𝑤 ∈ �̅�1 (in 4.1) and 𝑣 ∈ �̅�2 (in 4.2) then stop with an optimum solution:

 𝑀𝑖𝑛{𝑓𝑑(𝜏𝑖), 𝑓𝑑(𝜏𝑖−1)} =
1

2
{[|𝑓𝑑(𝜏𝑖) + 𝑓𝑑(𝜏𝑖−1)|] − [|𝑓𝑑(𝜏𝑖) − 𝑓𝑑(𝜏𝑖−1)|]}, … … … … … (3)

with 𝑓𝑑(𝜏1) = 𝑓𝑑(𝜏0) for the first run i = 1 as the starting tour to the unidirectional phase.

6. If descendants (w) and descendants (v) = Ø, then return to step 3.

7.1 Let 𝑥 ∈ descendants (w) and remove x from �̅�1.

7.2 Let 𝑥 ∈ descendants (v) and remove x from �̅�2.

7.3 Let 𝑥 ∈ descendants (w) and remove x from �̅�1.

7.4 Let 𝑥 ∈ descendants (v) and remove x from �̅�2.

8.1.1 If 𝑥 ∈ �̅�1, then {if 𝑓𝑎1
(𝑤) + l(w, x) < 𝑓𝑎1

(𝑥), then 𝑓𝑎1
(𝑥): 𝑓𝑎1

(𝑤) + l(w, x); if 𝑓𝑎1
(𝑥) +

ℎ𝑎1
(𝑥) < 𝑓𝑎1

(𝑥); return to step 6}.

8.1.2 If 𝑥 ∈ 𝐴1, then {if 𝑓𝑎1
(𝑤) + l(w, x) < 𝑓𝑎1

(𝑥), then 𝑓𝑎1
(𝑥): 𝑓𝑎1

(𝑤) + l(w, x); if 𝑓𝑎1
(𝑥) +

ℎ𝑎1
(𝑥) < 𝑓𝑎1

(𝑥), then [𝑓𝑎1
(𝑥): = 𝑔𝑎1

(𝑥) + ℎ𝑎1
(𝑥): remove x from 𝐴1 and put x in �̅�1];

return to step 6}.

8.1.3 Put x with its value 𝑓𝑎1
(𝑥) in �̅�1, then go to step 6.

8.2.1 If 𝑥 ∈ �̅�2, then {if 𝑓𝑎2
(𝑤) + l(w, x) < 𝑓𝑎2

(𝑥), then 𝑓𝑎2
(𝑥): 𝑓𝑎2

(𝑤) + l(w, x); if 𝑓𝑎2
(𝑥) +

ℎ𝑎2
(𝑥) < 𝑓𝑎2

(𝑥); return to step 7}.

8.2.2 If 𝑥 ∈ 𝐴2, then {if 𝑓𝑎2
(𝑤) + l(w, x) < 𝑓𝑎2

(𝑥), then 𝑓𝑎2
(𝑥): 𝑓𝑎2

(𝑤) + l(w, x); if 𝑓𝑎2
(𝑥) +

ℎ𝑎2
(𝑥) < 𝑓𝑎2

(𝑥), then [𝑓𝑎2
(𝑥): = 𝑔𝑎2

(𝑥) + ℎ𝑎2
(𝑥): remove x from 𝐴2 and put x in �̅�2];

return to step 6}.

8.2.3 Put x with its value 𝑓𝑎2
(𝑥) in �̅�2, then go to step 6.

8.3.1 If 𝑥 ∈ �̅�1, then {if 𝑓𝑧1
(𝑤) + l(w, x) < 𝑓𝑧1

(𝑥), then 𝑓𝑧1
(𝑥): 𝑓𝑧1

(𝑤) + l(w, x); if 𝑓𝑧1
(𝑥) +

ℎ𝑧1
(𝑥) < 𝑓𝑧1

(𝑥); return to step 6}.

8.3.2 If 𝑥 ∈ 𝑍1, then {if 𝑓𝑧1
(𝑤) + l(w, x) < 𝑓𝑧1

(𝑥), then 𝑓𝑧1
(𝑥): 𝑓𝑧1

(𝑤) + l(w, x); if 𝑓𝑧1
(𝑥) +

ℎ𝑧1
(𝑥) < 𝑓𝑧1

(𝑥), then [𝑓𝑧1
(𝑥): = 𝑔𝑧1

(𝑥) + ℎ𝑧1
(𝑥): remove x from 𝑍1 and put x in �̅�1]; return

to step 6}.

8.3.3 Put x with its value 𝑓𝑧1
(𝑥) in �̅�1, then go step 6.

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 22

8.4.1 If 𝑥 ∈ �̅�2, then {if 𝑓𝑧2
(𝑤) + l(w, x) < 𝑓𝑧2

(𝑥), then 𝑓𝑧2
(𝑥): 𝑓𝑧2

(𝑤) + l(w, x); if 𝑓𝑧2
(𝑥) +

ℎ𝑧2
(𝑥) < 𝑓𝑧2

(𝑥); return to step 6}.

8.4.2 If 𝑥 ∈ 𝑍2, then {if 𝑓𝑧2
(𝑤) + l(w, x) < 𝑓𝑧2

(𝑥), then 𝑓𝑧2
(𝑥): 𝑓𝑧2

(𝑤) + l(w, x); if 𝑓𝑧2
(𝑥) +

ℎ𝑧2
(𝑥) < 𝑓𝑧2

(𝑥), then [𝑓𝑧2
(𝑥): = 𝑔𝑧2

(𝑥) + ℎ𝑧2
(𝑥): remove x from 𝑍2 and put x in �̅�2]; return

to step 6}.

8.4.3 Put x with its value 𝑓𝑧2
(𝑥) in �̅�2, then go to step 6.

The reason for introducing the DBD heuristic development approach is that each of the four

searches has complexity 𝑂(𝑏
4

𝑑) (in Big O notation) and 𝑂(𝑏
4

𝑑 + 𝑏
4

𝑑 + 𝑏
4

𝑑 + 𝑏
4

𝑑) and according to

Russell and Norvig (2003) is much less than the running time of one search from the beginning

to the goal which would be 𝑂(𝑏𝑑). This means a great improvement in the convergence speed of

the DBD heuristic provided the improvement algorithm does not take long to terminate.

5.0 Conclusion

The problem of the unidirectional heuristics is the time taken to find an optimum solution of high

quality. The article proposed a DBD heuristic development framework that improves the search

performance and quality of the optimum solutions. Thus, the heuristic development approach

improves the convergence of the heuristic and solves large NP-complete problems within a few

iterations. There is need to further improve and implement the DBD heuristic to solve large NP-

complete real life TSP instances.

6.0 Areas for further research

The second part of the DBD heuristic development framework will implement it to solve

selected real life NP-complete TSP instances.

References

Bagley, J. D. (1967). The behaviour of adaptive systems which employ genetic and correlation

algorithms. Ph.D. thesis, University of Michigan.

Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1), 87-90.

Bock, F. (1958). An Algorithm for Solving Traveling-Salesman and Related Network

Optimization Problems. Presented at the 14th National Meeting of the Operations Research

Society of America. S t. Louis.

Croes, G. A. (1958). A Method for Solving Travelling-Salesman Problems, Operations Research,

6 (6), 791 – 812.

Dai, P., & Goldsmith, J. (2007). Multi-threaded BLAO* algorithm. In Proc. 20th International

FLAIRS Conference, 56–62.

de Champeaux, D. & Sint, L. (1977). An improved bidirectional heuristic search algorithm. J.

ACM, 24(2), 177-191.

de Champeaux, D. (1983). Bidirectional heuristic search again. Journal of ACM 30(1), 22 – 32.

Dechter, R. & Pearl, J. (1985). Generalized Best-First Search Strategies and the Optimality of

A*. J. ACM, 32(3), 505-536.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Math-

Ematik, 1, 269-271.

Dillenburg, J. F. & Nelson, P. C. (1973). Improving the efficiency of depth first search by cycle

elimination. Information processing letters, 45(1), 5 – 10.

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 23

http://en.wikipedia.org/wiki/Big_O_notation

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search strategy.

Technical Report, n. 91-016, Politecnico di Milano.

Flood, M. M. (1956). The travelling-salesman problem. Operations Research. 4, 61-75.

Ford, L. R. (1956). Network Flow Theory. Technical Report P-923 Rand Corporation, Santa

Monica CA.

Glover F. (1989), Tabu Search - Part I, Operations Research Society of America (ORSA) Journal

on computing, Vol. 1, No. 3, pp 190-206.

Glover F. (1990), Tabu Search - Part II, Operations Research Society of America (ORSA)

Journal on computing, Vol. 2, No. 1, pp 4-32.

Goldberg, A. V. & Harrelson, C. (2005). Computing the Shortest Path: A* Search Meets Graph

Theory. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'05).

Hansen, E. A. & Zhou, R. (2007). Anytime Heuristic Search. Journal of Artificial Intelligence

Research, 28, 267-297.

Harris, L. (1974). The heuristic search under conditions of error. Artificial Intelligence, 5 (3),

217 – 234.

Hart, J. P. & Shogan, A.W. (1987). Semi-greedy heuristics: An empirical study. OR Letters, 6,

107-114.

Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Trans. Syst. Science and Cybernetics, SSC, 4(2), 100-107.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, University of

Michigan Press.

Holte, R. C. (2009), Common Misconceptions Concerning Heuristic Search, Computing Science

Department, University of Alberta Edmonton, Canada.

Ikeda, T. K., Hsu, M., Inai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Tenmoku, K., &

Mitoh, K. (1994). A Fast Algorithm for Finding Better Routes by AI Search Techniques. In

the proceedings of the Vehicle Navigation and Information Systems Conference, IEEE.

Jensen, R., Bryant, R., & Veloso, M. (2002). Set A*: An efficient BDD-based heuristic search

algorithm. In Proceedings of the 18th National Conference on Artificial Intelligence

(AAAI-02), 668–673.

Kaindl, H., Kainz, G., Steiner, R., Auer, A., & Radda, K. (1999), Switching from bidirectional to

unidirectional search, In Proc, Sixteen International Joint Conference on Artificial

Intelligence (IJCAI-99), San Francisco, CA: Morgan Kaufmann Publishers.

Klunder, G. A., & Post, H. N. (2006). The Shortest Path Problem on Large Scale Real Road Net-

Works. Networks, 48(4), 182-194.

Kwa, J. B. H. (1989). BS*: An Admissible Bidirectional Staged Heuristic Search Algorithm.

Artificial Intelligence, 38(1), 95-109.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A.H. and Teller, E. (1958),

Equations of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087-

1092.

Nelson, P. C., & Toptsis, A. A. (1991). Search Space Clustering in Parallel Bidirectional

Heuristic Search. In Proc. Of the 4th UNB Artificial Intelligence Symposium, New

Brunswick, Canada in September, 563 – 573.

Nelson, P. C., & Toptsis, A. A. (1992). Unidirectional and Bidirectional Search Algorithms.

IEEE Software, 9(2), 77 – 83.

Pijls, W. & Posty, H. (2008). A new bidirectional algorithm for shortest paths. Econometric

Institute Report EI 2008-25.

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 24

Pohl, I. (1969). Bi-directional and heuristic search in path problems. SLAC-104, UC-32,

Stanford university, California.

Pohl, I. (1971). Bi-directional search. In Machine Intelligence. Edinburgh University Press, 6,

127-140.

Politowski, G., & Pohl, I. (1984). D-Node Retargeting in Bidirectional Heuristic Search. In Proc.

of the AAAI-84, 274-277.

 Russell, S. J. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach (2nd Ed.). Upper

Saddle River, New Jersey: Prentice Hall.

Toptsis, A. A., Chaturvedi, R. A., & Feroze, A. (2009). Kohonen-guided Parallel Bidirectional

Voronoi-assisted Heuristic Search. International Journal of Advanced Science and

Technology, 5, 15 – 34.

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-3 25

https://en.wikipedia.org/wiki/Stuart_J._Russell
http://aima.cs.berkeley.edu/

