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Abstract: The infinite Geometric Series is a series of the form Zax". The
k=0

o a
geometric power series » ax" converges for |x|<1 and is equal to T_x .
k=0

Let g be sequence in (0, 1) that converges to 1. The matrix based on
convergent infinite geometric series defined as a,,, = (1-g,)g,, . We

denote this matrix by M ; and name it geometric matrix. M isa

sequence to sequence mapping. When a matrix M ; is applied to a

sequence x, we get a new sequence M ; x whose nth term is given by:

(ng)n = (1_gn)z gnkxk
k=0

The sequence M ; x is called the M | -transform of the sequence x.

The M ; matrix was introduced by Madison Hankson, Tiffany Northcut

and Mulatu Lemma in (1).

1. Basic notation and definitions. Let A=(a,) be an infinite
matrix defining a sequence to a sequence summability transformation

given by
(Ax)n = Zankxk
k=0
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(2.1)
Where (Ax), denotes the nth term of the image sequence Ax . Let y be a

complex number sequence. Throughout this paper, we use the following
basic notations and definitions:

i. ¢ = {theset of all convergent complex number sequences }
i = {y SN \converges}
. ly={y:ayer}
IV. ¢ ={y: yis summable by A}

Definition 1. If X and Y are sets of complex number sequences,
then the matrix A is called an x -y matrix if the image Au of u under
the transformation A is in Y whenever u is in X.

Definition 2. The summability matrix A is said to be I-
translative for the sequence u in 4(a) provided that each of the

sequences Ty and Su is ing(a), where 1, = {u,,u,,u,,..} aNds, ={o,u,,u,,..}-

2. The main results
Proposition 1.

Mgl /-1 @-g)er
Lemma 1:

Myls -0 = @-g)er
Proof: We use the Knopp-Lorentz Rule:
|\/|gIS (—) =

S la-g,)e!

n=0

<M
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Z_(;‘(l_ gn)‘ <M (for k=0)

— (1-9g)e/

Lemma 2:
l-gel/ = I\/Igisl —1

Proof: We use the Knopp-Lorentz Rule:

D Ja,< Z‘(l—gn)gf
n=0 n=0

. Z(l_ gn) <M for some M>0 as

1-g)el

Now Proposition 1 follows by Lemmas 1&2.

Proposition 2. Every I-I G, matrixis |-translative for each

sequence xe /.

Theorem 1. Every I-1 G, matrixis is I-translative for those
sequences for which Xel(Gg), k=1,2,34......

Proof. Suppose that x is a sequence in 1 (G,). We show that
(1) T, €l(G,), and

(2) s, €l(G,), where Tx and Sx are as defined in Definition 2.
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Let us first show that (1) holds.

Note that
2

‘(Mng)n :(1_tn)ixk+1trl1(

_ (1_tn) ixk+ltrl:+l
:M N th:

n k=1
Let A = (1;tn) ixktr‘f

n k=1

Now the conditions that A<I follows from xel(M,).
Next, we show that (2) holds as follows. We have

‘(M gsx)n = (1_tn) Zxk—ltrl:
k=1
o (1_tn)zxktrl1<+l
k=0
Let E, =t, (=)D Xty
k=0

But the hypothesis that xel(G,) implies that E is in¢. Hence

the theorem follows.

Here, we remark that a sequence X defined by x, = (-1)* is one of
the sequences which satisfies the condition of Theorem 1.

Corollary 1. Every |—| gmatrix is |-translative
for the class of all sequence x whose partial sum is bounded.

Proof. By[3, Thm.8], x isin ¢(G, ).Hence the assertion follows
by Theorem 1.
Corollary 2. Every ¢-¢ G, matrix is |-translative for the

unbounded sequence X defined by Xy = (-1) *(k+1)
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Proof.
.Note that

(M ), = z (1-9,)9" (-1 (k +1)

-(-g,) kigﬁ(—l)k(kﬂ)

-(1-g,) ki(—gn)k(m)

1_ gn
T (l+g,)’

< (1_ gn)

Now M, matrix is1-I = (1-g)<l, by Proportion 1

and hence MgXEI-

Now sincexe ¢(G, ), the corollary easily follows by
Theorem 1.
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