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 Abstract: The infinite Geometric Series is a series of the form .
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Let g be sequence in (0, 1) that converges to 1. The   matrix based on 

convergent infinite geometric series defined as = (1- . We 

denote this matrix by M g  and name it geometric matrix.    M g   is a 

sequence to sequence mapping.  When a matrix M g  is applied to a 

sequence x, we get a new sequence M g  whose nth term is given by: 

                                               k

k

n
ok

nng xggxM 




 )1()(
 

The sequence M g   is called the M g -transform of the sequence x. 

 

The M g  matrix was introduced by Madison Hankson, Tiffany Northcut 

and Mulatu Lemma in (1). 

1. Basic notation and definitions.   Let  nkaA   be an infinite 
matrix defining a sequence to a sequence summability transformation 
given by 
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 (2.1) 
Where  nAx  denotes the nth term of the image sequence Ax . Let y be a 

complex number sequence. Throughout this paper, we use the following 

basic notations and definitions: 

i.  sequencesnumber complex  convergent allofsetthec  
ii. l  






0
:

k k convergesyy   

iii. l   AyyA :)(  

iv.  Aby  summable is:y)( yAc   
  
Definition 1.  If X and Y are sets of complex number sequences, 

then the matrix A is called an YX    matrix if the image Au of u under 

the transformation A is in Y whenever u is in X. 

 

Definition 2.  The summability matrix A is said to be l-

translative for the sequence u in  A  provided that each of the 

sequences Tu and Su is in  A , where  ,...,, 321 uuuTu   and  ,...,,0 10 uuSu  . 

 

 
2. The main results 

Proposition 1. 

 
isM g   - Û  )1( g

 

Lemma 1: 

isM g  -    )1( g  . 

Proof: We use the Knopp-Lorentz Rule: 

isM g
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 Lemma 2:  

  g1 lislM g 
  

Proof:  We use the Knopp-Lorentz Rule: 
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 for some M>0  as 

 )1( g
. 

Now Proposition 1 follows by Lemmas 1&2. 

Proposition 2.  Every l - l   gG  matrix is l-translative  for each 

sequence x . 

Theorem 1.  Every l - l   gG    matrix is is l-translative  for those 

sequences for which  )( gGlx ,  k=1,2,3,4…... 

Proof.  Suppose that x is a sequence in l )( gG . We show that 

(1) )( gx GlT  , and 

(2) )( gx GlS  , where Tx and Sx  are as defined in Definition 2.  
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Let us first show that (1) holds. 
Note that 
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Now the conditions that lA  follows from   )( gMlx .  

Next, we show that (2) holds as follows. We have 
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 But the hypothesis that  )( gGlx  implies that E is in . Hence 

the theorem follows. 

Here, we remark that a sequence x defined by k

kx )1(  is one of 
the sequences which satisfies the condition of Theorem 1. 

Corollary 1.  Every ll   g matrix is l-translative  

for the class of all sequence x whose partial sum is bounded. 
 

Proof.  By [3, Thm. 8], x is in  gG .Hence the assertion follows 

by Theorem 1. 

Corollary 2.  Every    G g   matrix is l-translative for the 

unbounded sequence x defined by   kx  = (-1) k (k+1) 
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Proof.   

.Note that 
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Now  matrix is l-l   (1-g)l , by Proportion 1   

and hence  .lxM g    

 

Now since  
gGx  , the corollary easily follows by 

Theorem 1. 
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