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variables assuming real values only and following the normal distribution with mean zero and joint 
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n this paper we use data science to find the number 

of zeros and number of level crossings of algebraic 

polynomial using different methods. Data science 

often uses statistical inferences to predict or 

analyze trends from data, while statistical 

inferences uses probability distributions of data. 

Hence knowing the probability and its applications 

are important to work effectively on data science 

problems and we get the number of zeros of the 

polynomial we consider, is the most approximate to 

other predecessors. 

I. INTRODUCTION 

 

 

Consider the family of equations 

(1)0)()1,(
0





n

k

k

kn xtaxf                              

where ,10,)(  tttak  are dependent random 

variables assuming real values only and following 

the normal distribution with mean zero and joint 

density function.  

  (2)')2/1(exp)2( /2/1
 MM sa 

                                 

when M-1 is the moment matrix with 

njijiiji ....1,0,,,0,,1     and d’ 

is the transpose of the column vector d.  

 In this paper we estimate the upper bound 

of the number of real roots of (1.1). We prove the 

following theorem.  

THEOREM: There exists an integer n0 and a set 

E of measure at most 

)logloglog/(log 00 nnA  such that, for each 

n>n0 and all not belonging to E, the equations 

I 
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(1.1) satisfying the condition (1.2), have at most 

n  log n) log (log 2 roots where α and A are 

constants. 

The transformation 
x

x 1   makes the equation 

fn(x, t)=0 transformed to 

  (t)).a(a0(t).... and 0')( n

0

1


 
n

r

n xta  

(t)(t),.....aa (t),(a and 01-nn  have 

the same joint density function. Therefore number 

of roots and the measure of the exceptional set in 

the set [ , ] are twice the corresponding value 

can be considered and now show that this upper 

bound is same as in [0,1]. 

There are many known asymptotic estimates for 

the number of real zeros that an algebraic or 

trigonometric polynomial are expected to have 

when their coefficients are real random variables. 

The present paper considers the case where the 

coefficients are complex. The coefficients are 

assumed to be independent normally distributed 

with mean zero. A general formula for the case of 

any complex non stationary random process is also 

presented.  

Some years ago Kac (1943) gave an asymptotic 

estimate for the expected number of real zeros of 

an algebraic polynomial where the coefficients are 

real independent normally distributed random 

variables. Later Ibragimov and Maslova (1971) 

obtained the same asymptotic estimate for a case 

which included the results due to Kac(1943, 1949), 

Littlewood and Offord (1939) and others. They 

considered the case when the coefficients belong 

to the domain of attraction of normal law. Recently 

there has been some interesting development of the 

subject, a general survey of which, together with 

references may be found in a book by Bharucha-

Reid and Sambandham (1986). These 

generalizations consider different types of 

polynomials, see for example Dunnage (1966) or 

study the number of level crossings rather than 

axis crossings, see Farahmand (1986, 1990). 

However, they assume the real valued coefficients 

only. Dunnage (1968) considered a wide 

distribution for the complex-valued coefficients, 

however he only obtained an upper limit for the 

number of real zeros. Indeed, the limitation of this 

result, being only in the form of an upper bound, is 

justified. It is easy to see that for the case of 

complex coefficients there can be no analogue of 

the asymptotic formula for the expected number of 

real zeros. To illustrate this point we use the result 

due to Dunnage (1968).Suppose 

  
n
j jj xfjix )(0   has a real root where 

fj(x) is in the form of xj or cosjθ and 

0,1.....nj , and j  j  are sequences of 

independent random variables. This implies that 

the polynomials  
n
j j xfj )(0  and 

 
n
j j xfj )(0  have a common root and the 

elimination of fj(x) leads to the equation 

 )..........., ,..........,( n1010  n =0. 

 

Thus the number of roots in the range [ , ] 

and the measure of the exceptional set are each 

four times the corresponding estimates for the 

IJRDO - Journal of Mathematics                            ISSN: 2455-9210

Volume-5 | Issue-2 | Feb,2019 38



 

range [0,1]. Evans has considered the case when 

the random co-efficients  are independent and 

normal. Our technique of proof is analogous to that 

of Evans. 

.2  We define the circles C0, Cc, Cm and C1 as 

follows. C0 with centre at z=0 and radius ,
2
1   Ce 

with centre at  

 
0

0

2

n log log

4
3

n
z   

 

And of radius 

 
0

0

2

n log log

4
1

n
  

Cm with centre at z=Xm=1-2-m and of radius   

 

...M,mmmfor  2)1( 10
)1(

2
1   m

m Xmr         

where 

 

n
C

and

n
M

n

and

n
m

n

nn

3 n0
0

log log
 radius and 1zat  centre with 1

2log

log log loglog
1

2log

log  log loglog

1
2log

loglog  log loglog















 


       

 By Jensen’s theorem the number of zeros 

of a regular function )(z  in a circle z0 and of 

radius r does not exceed  

 
)/log(

))(/(log 0

rR

zMn 
       

where M is the upper bound of )(z  in a 

concentric circle of radius R. We use this theorem 

to find the number of zeros of fn(z, t) in each 

circle. Summing the number of zeros in each of the 

circle we get the upper bound of the number of 

zeros of fn(z, t) in the circle.  

.3  To estimate the upper bound of the number of 

zeros of fn(z, t) in the circle C0, we shall use the 

fact that each ak(t) has marginal frequent function.  

 
2/2

2

1 te


     

Now if )1( then )1(max  nana vv for 

at least one value of ,nv   so that  

 

  (3)                                      

)1)(2/(n            

)1()1(max

2

2

)1)(2/1(2/12

1

2/1/2

0
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
















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t

v
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v

v

e

dte

naPnaP



  

Since ,amax  )1(),( v
n

zntzfx   in the 

circle  

  
(4)                                            )1(

amax  )1(1t)(x,f

get  

,1

loglog22

v

loglog2

x

loglog2

n

n

n

n

n

n

en

n

We

z







 

Outside a set of measure at most 

2)1)(2/1(2/1)/2(  ne  by (3). 

.)1()/2()/2())1((

 and ),0(

22/1
)1(

0

/22/12
0

0

2




 







nduenaP

atf

n
tn

n


 

Hence outside a set of measure at most 

22/1 )1()/2( n  we have   

IJRDO - Journal of Mathematics                            ISSN: 2455-9210

Volume-5 | Issue-2 | Feb,2019 39



 4 

2
0 )1()(),0(  ntatf n                       

If N0 denotes the number of zeros of fn (z, t) in the 

circle C0 then Jensen’s theorem (J), (4) and (5) we 

have  

2log

loglog2)1log(4

2log

))1(log( 4loglog2

0
nnne

N
n 




         

Outside a set of measure at most 

 ))1()/2()/2(( 22/12/1)1(2/1   ne n   

Thus for all n>n0, we have  

 
2log

loglog2)1log(4
0

nn
N


  

Outside a set of measure at most 

01

12/1)1(2/1

0

))1([)/2(
n

C
ne

nn

n 




  

Where C is an absolute constant 

4. To estimate the upper bound of the number of 

zeros of fn (x, t) in the circle C0 we proceed as 

follows. The probability that  
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If N0 denotes the number of zeros of fn (z, t) in the 

circle C0 then Jensen’s theorem (J), (4), (5) and (6) 

we have  
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5. To obtain an upper estimate of the number of 

zeros of fn (x, t) in the circle Cm(m=m0,m1,….M) 

we need the following lemmas. 

LEMMA 1: Let E be an arbitrary set. Then for 

complex numbers g, we have 





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
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 

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PROOF: Let gv=bv+icvg where bv and cv are real. 

Also let  
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. Following Evans [Lemma] we get the proof of 

the lemma. 

LEMMA 2: If gv, v=0,1…..are real and if 
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since the second term in both the numerator and 

denominator is dominant. Therefore   
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II. CONCLUSIONS 

 

 

Hence after solving the theorem and lemmas we 

have conclude that considering a polynomial (1.1) 

we have estimate bounds of the number of level 

crossings of the above random algebraic 

polynomials  where under a given condition  with 

mean zero and joint density  function 

   MM sa ')2/1(exp)2( /2/1


. There exists an 

integer n0 and a set E of measure at most 

)logloglog/(log 00 nnA  such that, for each 

n>n0 and all not belonging to E, the equations (1.1) 

satisfying the condition (1.2), have at most 

n  log n) log (log 2 roots where α and A are 

constants. 

Hence the theorem.  
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