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Abstract: In this paper, some new oscillation criteria for a class of fractional dynamic equations 
with damping term on time scales are established by use of the properties of fractional calculus and 
generalized Riccati transformation technique, where the fractional derivative is defined in the sense of 
the conformable fractional derivative. Oscillation criteria for corresponding dynamic equations on time
scales involving integer order derivative are special cases of the present results.
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1 Introduction

It is well known that research on qualitative properties of solutions of differential and difference equations 
is very important in the case their solutions are unknown, such as the stability, existence and so on [1-10]. 
Recently, Benkhettou etc. developed a conformable fractional calculus theory on arbitrary time scales
[11], and established the basic tools for fractional differentiation and fractional integration on time scales. 
Some properties on the conformable fractional calculus are listed in the following two theorems.

Theorem 1.1. Let α ∈ (0, 1], a, b, c ∈ T, λ ∈ R, and f, g be two rd-continuous functions. Then 
the following properties hold:

(i).
∫ b
a [f(t) + g(t)]∆αt =

∫ b
a f(t)∆αt+

∫ b
a g(t)∆αt.

(ii).
∫ b
a (λf)(t)∆

αt = λ
∫ b
a f(t)∆αt.

(iii).
∫ b
a f(t)∆αt = −

∫ a
b f(t)∆αt.

(iv).
∫ b
a f(t)∆αt =

∫ c
a f(t)∆αt+

∫ b
c f(t)∆αt.

(v).
∫ a
a f(t)∆αt = 0.

(vi). For |f(t)| ≤ g(t), it holds that |
∫ b
a f(t)∆αt| ≤

∫ b
a g(t)∆αt.

(vii). If f(t) > 0, then
∫ b
a f(t)∆αt ≥ 0.

Theorem 1.2. Let α ∈ (0, 1], f, g be two rd-continuous functions. Then∫ b
a f (α)(t)g(t)∆αt = [f(t)g(t)]ba −

∫ b
a f(σ(t))g(α)(t)∆αt.

In this paper, we will consider the following fractional dynamic equation with damping term on time
scales of the following form:

(a(t)[r(t)x(α)(t)](α))(α)+p(t)[r(t)x(α)(t)](α)+q(t)x(t) = 0, t ∈ T0, (1.1)
where α ∈ (0, 1], T is an arbitrary time scale, T0 = [t0,∞)

∩
T, t0 > 0, a, r, p, q ∈ Crd(T0,R+).
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A solution of Eq. (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is nonoscillatory. Eq. (1.1) is said to be oscillatory in case all its solutions are
oscillatory.

We will establish some new oscillation criteria for Eq. (1.1) by properties of conformable fractional
calculus and generalized Riccati transformation technique in Section 2, and present some applications
for the established results in Section 3. Some conclusions are presented in Section 4. Throughout this
paper, R denotes the set of real numbers and R+ = (0,∞), while Z denotes the set of integers. ti ∈

T, [ti,∞)T = [ti,∞)
∩
T, i = 0, 1, ..., 5. For the sake of convenience, denote δ1(t, ti) =

∫ t
ti

e− p̃
a
(s, t0)

a(s)
∆αs,

where p̃(t) = tα−1p(t).

2 Main Results

Theorem 2.1. Assume (2.1)-(2.3) hold:∫∞
t0

e− p̃
a
(s, t0)

a(s)
∆αs = ∞, (2.1)∫∞

t0
1

r(s)
∆αs = ∞, (2.2)

lim
t→∞

sup
∫ t
t0
[ 1
r(ξ)

∫∞
ξ (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ ]∆αξ = ∞, (2.3)

− p̃
a ∈ R+, ϕ, φ are two given nonnegative functions on T, and for all sufficiently large t1, there ex-

ists t2 > t1 such that

lim
t→∞

sup{
∫ t
t2
{q(s) ϕ(s)

e− p̃
a
(σ(s), t0)

− ϕ(s)[a(s)φ(s)](α) +
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
}∆αs} = ∞. (2.4)

Then every solution of Eq. (1.1) is oscillatory or tends to zero.

Proof . Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. Without loss of generality, assume

x(t) > 0 on [t1,∞)T, for some sufficiently large t1. By [12, Theorem 2.1 (ii)] it holds either x(α)(t) > 0
on [t2,∞)T for some sufficiently large t2 > t1 or lim

t→∞
x(t) = 0.

Now we consider the case x(α)(t) > 0 on [t2,∞)T. To this end, we define the generalized Riccati
function:

ω(t) = ϕ(t)a(t)[
(r(t)x(α)(t))(α)

x(t)e− p̃
a
(t, t0)

+ φ(t)].

Then by [12, Theorem 2.1 (i)] one has ω(t) ≥ 0, and by [12, Theorem 1.12 (ii)] and [12, Theorem
1.11] one can deduce that

ω(α)(t) =
ϕ(t)
x(t)

[
a(t)(r(t)x(α)(t))(α)

e− p̃
a
(t, t0)

](α) + [
ϕ(t)
x(t)

](α)
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

e− p̃
a
(σ(t), t0)

+ϕ(t)[a(t)φ(t)](α) + ϕ(α)(t)a(σ(t))φ(σ(t))

=
ϕ(t)
x(t)

[
e− p̃

a
(t, t0)(a(t)[r(t)x

(α)(t)](α))(α) − (e− p̃
a
(t, t0))

(α)a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)e− p̃

a
(σ(t), t0)

]
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+[
x(t)ϕ(α)(t)− x(α)(t)ϕ(t)

x(t)x(σ(t))
]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

e− p̃
a
(σ(t), t0)

+ ϕ(t)[a(t)φ(t)](α) + ϕ(α)(t)a(σ(t))φ(σ(t))

=
ϕ(t)
x(t)

[
(a(t)[r(t)x(α)(t)](α))(α) + p(t)[r(t)x(α)(t)](α)

e− p̃
a
(σ(t), t0)

] +
ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−[
ϕ(t)x(α)(t)

x(t)
]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e− p̃
a
(σ(t), t0)

+ ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e− p̃
a
(σ(t), t0)

+
ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))− [
ϕ(t)x(α)(t)

x(t)
]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e− p̃
a
(σ(t), t0)

+ϕ(t)[a(t)φ(t)](α).

From [12, Theorem 2.2] one furthermore has

ω(α)(t) ≤ −q(t)
ϕ(t)

e− p̃
a
(σ(t), t0)

+
ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−(
ϕ(t)
x(t)

)
δ1(t, t2)
r(t)

[
a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e− p̃
a
(σ(t), t0)

+ ϕ(t)[a(t)φ(t)](α)

≤ −q(t)
ϕ(t)

e− p̃
a
(σ(t), t0)

+
ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−(
ϕ(t)

x(σ(t))
)
δ1(t, t2)
r(t)

[
a(σ(t))[r(σ(t))x(α)(σ(t))](α)

e− p̃
a
(σ(t), t0)

]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e− p̃
a
(σ(t), t0)

+ ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e− p̃
a
(σ(t), t0)

+
ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))−[
ϕ(t)δ1(t, t2)

r(t)
][
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e− p̃
a
(σ(t), t0)

]2+ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e− p̃
a
(σ(t), t0)

+
ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))− [
ϕ(t)δ1(t, t2)

r(t)
][
ω(σ(t))
ϕ(σ(t))

− a(σ(t))φ(σ(t))]2 + ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e− p̃
a
(σ(t), t0)

+ ϕ(t)[a(t)φ(t)](α) − ϕ(t)δ1(t, t2)a
2(σ(t))φ2(σ(t))
r(t)

+[
ϕ(α)(t)
ϕ(σ(t))

+ 2
ϕ(t)δ1(t, t2)a(σ(t))φ(σ(t))

r(t)ϕ(σ(t))
]ω(σ(t))− ϕ(t)δ1(t, t2)

r(t)ϕ2(σ(t))
ω2(σ(t))

≤ −q(t)
ϕ(t)

e− p̃
a
(σ(t), t0)

+ ϕ(t)[a(t)φ(t)](α) − ϕ(t)δ1(t, t2)a
2(σ(t))φ2(σ(t))
r(t)

+
[ϕ(α)(t)r(t) + 2ϕ(t)δ1(t, t2)a(σ(t))φ(σ(t))]

2

4r(t)ϕ(t)δ1(t, t2)
. (2.5)

Substituting t with s in (2.5), fulfilling α-fractional integral for (2.5) with respect to s from t2 to t
yields

∫ t
t2
{q(s) ϕ(s)

e− p̃
a
(σ(s), t0)

− ϕ(s)[a(s)φ(s)](α) +
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
}∆αs ≤ ω(t2)− ω(t) ≤ ω(t2),

which contradicts the condition (2.4), and thus the proof is completed.

Corollary 2.2. in the case T = R, if we assume that

∫∞
t0

e− p̃
a
(s, t0)

a(s)
sα−1ds = ∞, (2.6)∫∞

t0
1

r(s)
sα−1ds = ∞, (2.7)
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∫∞
t0

[
ξα−1

r(ξ)

∫∞
ξ (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)sα−1

e− p̃
a
(σ(s), t0)

ds)τα−1dτ ]dξ = ∞, (2.8)

and for all sufficiently large t1, there exists t2 such that

lim
t→∞

sup{
∫ t
t2
{q(s) ϕ(s)

e− p̃
a
(s, t0)

− ϕ(s)s1−α[a(s)φ(s)]′ +
ϕ(s)δ1(s, t2)a

2(s)φ2(s)
r(s)

− [s1−αϕ′(s)r(s) + 2ϕ(s)δ1(s, t2)a(s)φ(s)]
2

4r(s)ϕ(s)δ1(s, t2)
}sα−1ds} = ∞, (2.9)

where ϕ, φ are two given nonnegative functions on R, then every solution of Eq. (1.1) is oscillatory
or tends to zero.

Corollary 2.3. Let T = Z and − p̃
a ∈ R+. Assume that

∞∑
s=t0

e− p̃
a
(s, t0)

a(s)
sα−1 = ∞, (2.10)

∞∑
s=t0

1
r(s)

sα−1 = ∞, (2.11)

∞∑
ξ=t0

[
ξα−1

r(ξ)

∞∑
τ=ξ

τα−1(
e− p̃

a
(τ, t0)

a(τ)

∞∑
s=τ

q(s)sα−1

e− p̃
a
(s+ 1, t0)

)] = ∞, (2.12)

and for all sufficiently large t1, there exists t2 such that

lim
t→∞

sup{
t−1∑
s=t2

{q(s) ϕ(s)
e− p̃

a
(s+ 1, t0)

−ϕ(s)s1−α[a(s+1)φ(s+1)−a(s)φ(s)]+
ϕ(s)δ1(s, t2)a

2(s+ 1)φ2(s+ 1)
r(s)

− [s1−α(ϕ(s+ 1)− ϕ(s))r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
}} = ∞, (2.13)

where ϕ, φ are two given nonnegative functions on Z. Then every solution of Eq. (1.1) is oscillato-
ry or tends to zero.

3 Conclusions

We have presented some oscillation criteria for a class of fractional dynamic equation with damping term
on time scales. These results unify continuous and discrete analysis as special cases.
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