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Abstract: In this paper, we investigate oscillation for a class of fractional dynamic equations with
damping term on time scales, and establish some oscillation criteria for it. The established oscillation
criteria unify continuous and discrete analysis, and are new results so far in the literature.
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1 Introduction

In [1], Hilger initiated the theory of time scale trying to treat continuous and discrete analysis in a
consistent way. Based on the theory of time scale, Many authors have taken research in oscillation of
various dynamic equations on time scales (see [2-8] for example). In these investigations for oscillation of
dynamic equations on time scales, we notice that most of the results are concerned of dynamic equations
involving derivatives of integer order, while none attention has been paid to the research of oscillation of
fractional dynamic equations on time scales so far in the literature.

In this paper, we will establish some new oscillation criteria for the following conformable fractional
dynamic equation with damping term on time scales of the following form:

(a(®)[r()z ()] @)@ 4p(t)[r ()@ ()] +-q(t)z(t) = 0, ¢ € To, (1.1)
where a € (0, 1], T is an arbitrary time scale, To = [tg,00) (T, to > 0, a, r, p, ¢ € Crq(To,R4). For the
e (s ty)
sake of convenience, denote 01 (t,t;) = fti ETAO‘S, where p(t) = t*'p(t).

2 Main Results

€ 5(87t0)
p o —4 . o 1 o
Theorem 2.1. Assume —¢ € R, and fto ) A%s = oo, fto ) A%s = o0,

675(7',750)
. tr 1 oo o oo Q(S) «a o a¢
tlglolosupfto[r(ﬁ) fg ( e I e_i(a(s),to)A S)AYT]AYE = 0.

Define D = {(¢,s)[t > s > to}. If there exists a function H € Crqa(D,R) such that

H(t,t) =0, fort>ty, H(t,s) >0, fort>s>t, (2.1)

and H has a nonpositive continuous a— partial fractional derivative H. S@ (t,s) with respect to the second
variable, and
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i 51 gy goy Uiy H09la(o) <(<)>> 8(5)(als)p(s)@ + s 1) (0(5))e (o (s)

16 (s)r(s) + 26()51 (5, t2)alo () (@ (N ne
17 (s)6(5)01(s, t2) |A%s} = oo, (2.2)

where t9 is sufficiently large. Then every solution of Eq. (1.1) is oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution x on [tg, c0)r. Without loss of generality, we may
assume x(t) > 0 on [t1,00)r, where ¢; is sufficiently large. By [9, Theorem 2.1 (ii)] we have either
2@ (t) > 0 on [tg, 00)T for some sufficiently large to or lim z(t) = 0.
) y larg ;
— 00

Now we assume z(®(t) > 0 on [ta,00)r. define the generalized Riccati function:
w(t) = 60l ZDZ I | i)
z(t)e_5(t,to)

Then by [9, Theorem 2.1 (i)] one has w(t) > 0. Furthermore, by Theorem 1.12 (i7), Theorem 1.11
and Theorem 2.2 in [9] one can deduce that

SO < ~a(0) ;20 1 pDlatte]@ - AR BN ()
1800 260086 ol
4r(t)p(t)oL(t,t

Moreover, we have

g {oha ~ a0 + SRR (1)) (o (1)

t) + 20()01(t, t2)a(o(t))o(o(t))]? N
_[o ( )r( )+4rq(5t()2¢(;§51(2t?t2() (t)p(o(t))] < —w@ (). (2.3)

Substituting ¢ with s in (2.3), multiplying both sides by H (t, s) and fulfilling a-fractional integral with re-
spect to s from t, to t, together with the properties of conformable fractional calculus one can obtain that

t S o )01 (s, t2)a’ s
j’tQH(t,s){q(s)e_g((i(M—¢(s)(a(5)¢(s))()+¢()1( ) (o) *(o(5))

19 )r(s) + 20(5)01 (5. o)l () oo ()] pay
1()9(5)01 (5. 2)

< — fti H(t,s)w(a)(s)Aas = H(t,ta)w(t2) + ft t (t,s)w(o(s))A%s < H(t, to)w(ta) < H(t,to)w(t2),

where in the last two steps we have used the fact that the function H (¢, s) is decreasing with respect to
the second variable due to H® (t,s) is nonpositive. Then

Jiy H, s>[q<s>€§gf;<;g)7t0) - g(o)a(ehp(s)e + DAL (e (ols)
[ (s)r(s) + 26(s)01 (s, ta)a(o () e (DI oy

7 (5)00)01(s, 1)

to S a $)d1(s, t2)a(a(s)) (o (s

= i HO o) (g — o) alohple) ) + SRSl
B (s)r(s) + 20(s)01 (s, )0 ()@ (DI oy

Ar(s)p(s)01(s, t2)
L H e o)y gy — e Nae() ) + &(s)01 (5. ta)a’ (o(5)) (0 (s))

“3(0(s), r(s)
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[0\ (s)r(s) + 2¢(5)1 (s, t2)a(0(3))¢(0(5))]2ma8
Ar(s)p(s)o1(s,t2)

< H(t, to)w(ta) + H(t,to) [} |a(s U(U((‘i)to) — o(s)(als)p(s))@ + ¢(8)51(57tz)iz(gf;(S))wz(a(S))
6 (5)r(s) + 20(6)01 5, 2)alo () o ()] o

4T(8)¢(8)51 (37 t2)

Furthermore,

Jim sup ek (U Ht 9)lale) (o003 — dls)alsho()®) + AL 2)a (o ()¢ (9())
_ [0 (s)r(s) + 20(s )51(8 t2)a(
47’( ) )(51(8 tQ

2 2
< wlt) 4 13 o) Gy — o) alohpla)) )+ SIS

[0\ (s)r(s) + 2¢(5)51(S7t2)a(0(8))¢(0(5))]2 1A% < oo
4r(s)p(s)o1(s, t2) ’

which contradicts (2.2), and then the proof is completed.

\_/Q

Theorem 2.2. Under the conditions of Theorem 2.1. If either of the following two conditions satis-

fy:
(i). Jim sup ooy m{fto (t—s)™ )eg(ﬁf’o_((s))_¢(3)(a(3)(p(s))(a>+¢(8)51(87tz)cf((s)( $))p*(o(s))
_[¢(“)(S)T(S)+2¢(8)51(8,tz)a(a(s))w(a(s))] JA%s} = 00, m > 1, (2.4)

(50051915 1)
(). Jim sup L (i~ ns)la(s) — ks = dl)als)o(s)

G ONT

B(5)01 (s, t2)a*(0(5))p*(0(s)) _ [8'V)(s)r(s) + 26(5)1 (s, t2)a(o())p(0())]*) nar gy
L 9()01 (5. 12 at 47«(3)(;;(2)51(?9,@) JA%s} =00,  (2.5)

then every solution of Eq. (1.1) is oscillatory or tends to zero.

The proof of Theorem 2.2 can be reached by setting H(t,s) = (t —s)™, m > 1 or H(t,s) = ln% in
Theorem 2.1.

Remark. In the established oscillation criteria above, if we set @ = 1, then the results reduce to
corresponding oscillation criteria for dynamic equations on time scales involving integer order derivative.
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